期刊文献+

全国新型冠状病毒肺炎发病情况室模型分析及疫情进展短期预测 被引量:11

SIR model analysis and short-term prediction of epidemic progress of corona virus disease 2019 in China
原文传递
导出
摘要 目的预测新型冠状病毒肺炎疫情短期进展,评估不同省之间的群体防控度。方法根据流行病传播动力学原理,建立室模型拟合全国及5省1月份疫情数据,获得参数后预测短期疫情进展,计算群体防控度。结果室模型拟合了全国及5个省份1月份报告发病情况,模型具有统计学意义(P<0.05)。根据模型参数计算的预测病例数对实际病例数的解释度全国达92.64%,浙江省最低为72.86%。群体防控度全国平均水平较高,与湖北省接近,其他4省较低。根据模型参数预测未来2月上旬全国及5省每日新增病例数仍将处于上升期。结论室模型较好地拟合了疫情初期报告发病数据,可用于疫情进展的短期预测。 Objective To predict the short-term progress of corona virus disease 2019(COVID-19)and evaluate the degree of population control among different provinces. Methods A SIR model was established to fit the epidemic data of the whole country and 5 provinces in January according to the principle of epidemic dynamics,After the parameters were obtained,the short-term epidemic progress was predicted and the population prevention and control degree was calculated.Results The SIR model fitted the incidence reported from the whole country and 5 provinces in January,and the model was statistically significant(P<0.05). The degree of explanation of the predicted number of cases calculated according to the model parameters to the actual number of cases was 92.64% in China,and the lowest was 72.86% in Zhejiang province. The national average level of population prevention and control was high,which was close to that of Hubei province,while that of Guangdong province was low. According to the model parameters,it predicted that the daily number of new cases in the country and provinces in the earlier days of February was still on the rise. Conclusion The SIR model could well fit the reported incidence data at the initial stage of the epidemic and could be used to predict the short-term progress of the epidemic.
作者 吉兆华 陆振华 刘昆 宋姝璇 邵中军 JI Zhao⁃hua;LU Zhen⁃hua;LIU Kun;SONG Shu⁃xuan;SHAO Zhong⁃jun(Department of Epidemiology,School of Public Health,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment,Air Force Medical University,Xi′an,Shaanxi 710032,China)
出处 《热带医学杂志》 CAS 2020年第3期279-282,共4页 Journal of Tropical Medicine
基金 国家自然科学基金(81803289) “艾滋病和病毒性肝炎等重大传染病防治”科技重大专项(2017ZX10105011) 军事医学创新工程(18CXZ011) 军队生物安全项目(A3705031902,A3702031906)。
关键词 新型冠状病毒肺炎 确诊病例 室模型 短期预测 COVID-19 Confirmed case SIR model Short-term prediction
  • 相关文献

参考文献4

二级参考文献23

  • 1韩晓娜,李承毅,方立群,曹务春.传染病模型在SARS防制中的应用[J].中华流行病学杂志,2005,26(3):169-171. 被引量:6
  • 2周怀梧.医用生物数学 [M].北京:人民卫生出版社,1987..
  • 3Hong Kong Department of Health. Latest figures on severe acute respir- atory syndrome( as at 2 January2004 ) available at : http ://www. info. gov. hk/info/ap/pdf/amoy_e, pdf.
  • 4Choi BC, Pak AW. A simple approximate mathematical model to pre- dict the number of severe acute respiratory syndrome cases and deaths. Epidemiology Community Health,2003,57:831-835.
  • 5Update : Severe Acute Respiratory Syndrome-United States ,2003. Avail- able at: http ://www. cdc. gov/mmwr/preview/mmwrhtml/ mm5215a2, htm.
  • 6Gabriel M, Anthony J, et al. The Epidemiology of Severe Acute Respir- atory Syndrome in the 2003 Hong Kong Epidemic : An Analysis of All 1755 Patients. Ann Intern Med,2004,141:662-673.
  • 7Chen KT,Twu SJ,Chang HL,et al. SARS in Taiwan: an overview and lessons learned. International Journal of Infectious Diseases ,2005,9:77.
  • 8Goh KT, Cutter J, Heng BH, et al. Epidemiology and Control of SARS in Singapore. Ann A cad Med Singapore,2006,35:301-316.
  • 9孙慧敏,唐晓凤,王波,谭雅慧,于晓寒,张景霞,闫永平,夏结来,徐德忠.SARS病毒和其他冠状病毒中性突变速率初步的比较研究[J].中华疾病控制杂志,2011,15(12):1026-1030. 被引量:4
  • 10夏结来.非线性模型统计分析体系及NoSA实现(二)[J].中国卫生统计,2000,17(5):279-281. 被引量:4

共引文献73

同被引文献93

引证文献11

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部