期刊文献+

基于0.13μm CMOS工艺的毫米波宽带LNA设计 被引量:2

Millimeter wave wideband LNA design based on 0.13μm CMOS process
下载PDF
导出
摘要 针对5G通信技术在毫米波频段的应用,设计了一种25~30 GHz的低噪声放大器(LNA)。为了在毫米波频段实现高增益,采用了三级电路级联结构,第一级采用共源结构,第二、三级采用共源共栅(cascode)结构,在共源管和共栅管之间加入级间电感,消除级间寄生电容和抑制共栅管的输出噪声。添加反馈网络来优化电路,利用En-In噪声模型对反馈网络进行噪声分析,优化LNA噪声性能。基于TSMC 0.13μm CMOS工艺,采用ADS软件平台对LNA进行仿真。实验结果表明:在25~30 GHz频段内性能良好,S11小于-12.6 dB,S22小于-13.4 dB,S 21为(25.6±0.3)dB,NF为(2.27~2.77)dB。 A 25~30 GHz low noise amplifier(LNA)is designed for the application of 5G communication technology in the millimeter wave band.In order to achieve high gain in the millimeter wave band,a three-stage circuit cascade structure is adopted,the first stage adopts a common source structure,the second and the third stages adopt a cascode structure,an interstage inductor is added between the common source tube and the common gate tube to eliminate the parasitic capacitance between the stages and suppress the output noise of the common gate.The circuit is optimized by adding a feedback network,and the En-In noise model is used to perform noise analysis on the feedback network,so as to optimize LNA noise performance.Based on the TSMC 0.13μm CMOS process,the ADS software platform is used to simulate on LNA.The experimental results show that the performance is good in the 25~30 GHz band,S11<-12.6 dB,S22<-13.4 dB,S 21=(25.6±0.3)dB,NF=(2.27~2.77)dB.
作者 陶路 王军 TAO Lu;WANG Jun(School of Information Engineering,Southwest University of Science and Technology,Mianyang 621010,China)
出处 《传感器与微系统》 CSCD 2020年第5期110-112,121,共4页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(69901003)。
关键词 毫米波 低噪声放大器 En-In噪声模型 反馈 millimeter wave low noise amplifier(LNA) En-In noise model feedback
  • 相关文献

参考文献2

二级参考文献33

  • 1Le T. P., Moad G., Rizzardo E. et al.. WO 98/01478[P], A1980115, 1998
  • 2Chiefari J., Chong Y. K., Ercole F. et al.. Macromolecules[J], 1998, 31: 5 559-5 562
  • 3Hawthorne D. G., Moad G., Rizzardo E. et al.. Macromolecules[J], 1999, 32: 5 457-5 459
  • 4Moad G., Chiefari J., Chong Y. K. et al.. Polym. Int.[J], 2000, 49: 993-1 001
  • 5Barner-Kowollik C., Quinn J. F., Morsley D. R. et al.. J. Polym. Sci.: Part A: Polym. Chem.[J], 2001, 39: 1 353-1 365
  • 6de Brouwer H., Schellekens M. A. J., Klumperman B. et al.. J. Polym. Sci.: Part A: Polym. Chem.[J], 2000, 38: 3 596-3 603
  • 7Perrier S., Barner-Kowollik C., Quinn J. F. et al.. Macromolecules[J], 2002, 35: 8 300-8 306
  • 8Calitz F. M., Tonge M. P., Sanderson R. D.. Macromolecules[J], 2003, 36: 5-8
  • 9Vana P., Quinn J. F., Davis T. P. et al.. Aust. J. Chem.[J], 2002, 55: 425-431
  • 10Barner-Kowollik C., Quinn J. F., Nguyen T. L. U. et al.. Macromolecules[J], 2001, 34: 7 849-7 857

共引文献6

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部