摘要
现有交通事故指标关联分析的粗糙集模型都是基于等价关系且只考虑单个决策属性的情形,并未考虑交通事故指标的多元性及其指标值大小的比较,在实际应用中存在着局限性。文章以交通事故数据为背景,基于隐患指标和事故指标2个一级指标,构造了一种多决策属性优势粗糙集模型,分析了模型的相关性质及其与单决策属性模型的区别与联系,定义了事故指标关于隐患指标的分类质量,基于该分类质量得到了隐患指标相对于事故指标的约简集,根据约简结果可以导出确定性最简序决策规则及可能性最简序决策规则,最后结合具体的交通事故数据验证了模型的有效性。
The existing rough set model for traffic accident index analysis is only suitable for containing a single decision attribute and has not taken into account the diversity of traffic accident index and the comparison of their index values which has limitation in practical applications.Under the background of traffic accident index,a novel multiple decision attribute dominance-based rough set model is constructed based on two first-level indices,namely hidden danger index and accident index.The corresponding properties of model and the difference as well as the relation compared with the single decision attribute model are analyzed.Moreover,the classification quality of the accident index according to the hidden danger index is defined and the relative reduct sets are gotten from which the deterministic and possible order decision rules are derived.Finally,the validity of the proposed model is verified combining with the specific traffic accident data.
作者
郭庆
GUO Qing(School of Mathematics, Hefei University of Technology, Hefei 230601, China)
出处
《合肥工业大学学报(自然科学版)》
CAS
北大核心
2020年第5期716-720,共5页
Journal of Hefei University of Technology:Natural Science
基金
中央高校基本科研业务费专项资金资助项目(JS2017HGXJ0030)
合肥工业大学博士学位专项基金资助项目(JZ2018HGBZ0085)。
关键词
粗糙集
交通事故指标
多决策属性
分类质量
序决策规则
rough set
traffic accident index
multi-decision attribute
classification quality
order decision rule