期刊文献+

多源异构数据情境中学术知识图谱模型构建研究 被引量:15

Research on the Construction of Academic Knowledge GraphModel in Multi-source Heterogeneous Data Situation
下载PDF
导出
摘要 [目的/意义]随着大数据和人工智能技术的蓬勃发展,数据驱动的智慧学术研究以及基于学术大数据的知识发现受到产业界和学术界的广泛关注。学术知识图谱是学术信息挖掘和学术知识管理的基础,在智慧学术研究中具有重要的学术价值和产业价值。[方法/过程]本文以构建智慧学术服务的实际需求为出发点,从学术大数据的获取、学术实体识别、学术实体链接与知识融合、学术知识图谱本体模型构建、学术知识图谱表示与存储等核心问题入手,提出智慧学术领域的知识图谱构建的理论模型。[结论/结果]多源异构数据融合的学术知识图谱是支撑智慧学术的数据基础,同时也是人工智能及知识表示技术在学术大数据领域的重要应用。 [Purpose/Significance]With the rapid development of big data and artificial intelligence technology,data-driven intelligent academic research and knowledge discovery based on academic big data have received extensive attention from industry and academic.Academic knowledge graph is the foundation of academic information mining and academic knowledge management,and has important academic value and industrial value in intelligent academic research.[Method/Process]This paper started from the actual needs of building intelligent academics service,begining with the core issues of academic big data acquisition,academic entity identification,academic entity link and knowledge fusion,academic knowledge map ontology model construction,academic knowledge graph representation and storage,and proposed the theoretical model for the construction of knowledge graph in the field of smart academics.[Result/Conclusion]The construction of academic knowledge graph for multi-source heterogeneous data fusion was the data foundation supporting intelligent academics,and also an important application of artificial intelligence and knowledge representation technology in the field of academic big data.
作者 李肖俊 邵必林 Li Xiaojun;Shao Bilin(School of Management,Xi'an University of Architecture and Technology,Xi'an 710055,China)
出处 《现代情报》 CSSCI 2020年第6期88-97,共10页 Journal of Modern Information
关键词 学术知识图谱 多源异构数据 知识图谱 知识表示 智慧学术 academic knowledge graph multi-source heterogeneous data knowledge graph knowledge representation smart academic
  • 相关文献

参考文献1

二级参考文献46

  • 1Oren Etzioni,Michele Banko,Michael J.Cafarella.Machine reading[C]//Proceedings of AAAI Conference on Artificial Intelligence,2006.
  • 2K Barker,B Agashe,S Chaw,et al.Learning by reading:A prototype system,performance baseline and lessons learned[C]//Proceedings of 22nd National Conference of Artificial Intelligence,2007.
  • 3O Etzioni,M Cafarella,D Downey,et al.Unsupervised named-entity extraction from the web; An experimental study[J].Artificial Intelligence,2005,165 (1):91-134.
  • 4Michele Banko,Michael J Cafarella,Stephen Soderland,et al.Open information extraction from the web[C]//Proceedings of IJCAI,2007.
  • 5Michele Banko,Oren Etzioni.The tradeoffs between open and traditional relation extraction[C]//Proceedings of Annual Meeting of the Association for Computational Linguistics,2008.
  • 6F Wu,D S Weld.Open information extraction using Wikipedia[C]//Proceedings of Annual Meeting of the Association for Computational Linguistics,2010:118-127.
  • 7Fei Wu,Daniel S Weld.Automatically semantifying Wikipedia[C]//Proceedings of the 16th Conference on Information and Knowledge Management,2007.
  • 8Anthony Fader,Stephen Soderland,Oren Etzioni.Ⅰ-dentifying relations for open information extraction[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing,2011.
  • 9Oren Etzioni,Anthony Fader,Janara Christensen,et al.Open information extraction:the second generation[C]//Proceedings of International Joint Conference on Artificial Intelligence,2011.
  • 10Mausam,Michael Schmitz,Robert Bart,Stephen Soderland,Oren Etzioni.Open Language Learning for Information Extraction[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CONLL),2012.

共引文献27

同被引文献222

引证文献15

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部