摘要
针对复杂作战背景下不确定性带来的作战推演技术难题,本文面向方案推演分析和战法战术优化分析等实际应用需求,以不确定性、深度学习、数据挖掘等相关理论为基础,重点从推演分支生成、作战指挥智能化决策、推演数据可视化分析等方面进行研究,为陆军基于智能对抗推演理论和技术进行联合作战概念分析、武器装备论证实验、作战方案推演分析和战法战术优化分析提供支撑。
To solve the technical problems in combat exercises caused by the uncertainty in the complex background of battle,and to meet the practical application requirements such as scheme exercise analysis and tactical optimization analysis,this article uses the theories of uncertainty,in-deep learning and data mining to research the generation of exercise branches,intelligent decision-making of battle command,visual analysis of exercise data,etc.It supports the Army for the concept analysis of joint operations,the demonstration experiment of weapons and equipment,the analysis of operational plan,and the optimization analysis of tactics,which are based on the theory and technology of intelligent combat exercises.
作者
王军
陈锐
汤磊
WANG Jun;CHEN Rui;TANG Lei(Beijing Huaru Technology Co., Ltd, Nanjing 210012, China)
出处
《国防科技》
2020年第1期41-44,共4页
National Defense Technology
关键词
智能化
大样本
作战推演
intelligent
large sample
combat exercises