期刊文献+

基于设备与信道特征的物理层安全方法 被引量:6

Research on Physical-layer Security Based on Device and Channel Characteristics
下载PDF
导出
摘要 接入安全与数据保密是无线网络安全性和保密性的两个最重要的因素.然而,基于计算安全的身份认证及保密通信方法在未来信息化系统中面临巨大挑战.与此同时,基于信息论安全的物理层安全为身份认证和保密通信开辟了新的思路.本文综述了近年来基于设备与信道特征的物理层安全方法的研究进展.利用无线通信设备、信道的特性可以从物理层实现设备身份的识别与认证以及密钥的分发与更新,同时具备高度安全性与使用便捷性.其中,设备指纹方法从发射信号中提取发送设备的特征,作为设备身份的唯一标识,从而准确识别不同发射源个体.指纹的唯一性、鲁棒性、长时不变性、独立性、统一性和可移植性是设备指纹身份认证的依据.而基于信道特征的密钥生成方法则从接收射频信号中提取互易的上下行信道的参数,转化为对称密钥,实现一次一密的安全传输.同样地,密钥的一致性、随机性、防窃听性则是反映无线信道密钥生成方法性能的关键要素.本文对设备指纹与信道密钥的关键要素归纳分析,并指出目前存在的几类难点问题.最后,本文讨论了在未来移动通信中该技术新的应用场景. Access security and data confidentiality are two of the most critical factors in wireless network security. However, existing authentication and secure transmission methods based on computation security face challenges in the future information systems. Meanwhile, physical-layer security based on information-theoretical security inaugurates a new idea to authentication and secure transmission. This paper summarizes the research progress of physical layer security methods based on device and channel characteristics in recent years. In the physical layer, the characteristics of wireless communication devices and channels can be used to identify/authenticate device identities, as well as distribute and update keys. They are both highly secure and very easy to deploy in practical applications. Device fingerprinting extracts features from the emitted signals as the unique identification for authenticated users. Uniqueness, robustness, long-term invariance, independence, consistency, and portability are six certification basises of the device fingerprinting. Secret key generation based on channel characteristics extracts reciprocal channel parameters from received ratio signals, and turn them into a pair of symmetric keys to realize one-time-pad secure communications. Similarly, key consistency, randomness, and anti-eavesdrop are crucial elements that reflect the performance of the wireless channel key generation method. This paper analyses and summarizes the critical issues of device fingerprinting and secret key generation. Finally, this paper discusses the research difficulties and new application scenarios in the future.
作者 李古月 俞佳宝 胡爱群 LI Gu-Yue;YU Jia-Bao;HU Ai-Qun(School of Cyber Science and Engineering,Southeast University,Nanjing 210096,China;School of Information Science and Engineering,Southeast University,Nanjing 210096,China;Purple Mountain Laboratories for Network and Communication Security,Nanjing 211111,China)
出处 《密码学报》 CSCD 2020年第2期224-248,共25页 Journal of Cryptologic Research
基金 国家自然科学基金(61801115,61571110,61941115) 江苏省重点研发计划(BE2019109) 中央高校基本科研业务费专项资金。
关键词 物理层安全 设备指纹 无线信道密钥生成 空口安全 physical-layer security radio frequency fingerprint secret key generation based on wireless channel air interface security
  • 相关文献

参考文献6

二级参考文献103

  • 1高西奇,尤肖虎,江彬,潘志文.面向后三代移动通信的MIMO-GMC无线传输技术[J].电子学报,2004,32(F12):105-108. 被引量:10
  • 2Li X H, Hwu J, Ratazzi E P. Using antenna array redundancy and channel diversity for secure wireless transmissions. J Commun, 2007, 2: 24-32.
  • 3Sayeed A, Perrig A. Secure wireless communications: Secret keys through multipath. In: Proceedings of IEEE Inter?national Conference on Acoustics, Speech, and Signal Processing (ICASSP'08), 2008. 3013-3016.
  • 4Wallace J, Sharma R K. Automatic secret keys from reciprocal MIMO wireless channels: measurement and analysis. IEEE Trans Inform Forens Secur, 2010, 5: 381-391.
  • 5Wallace J. Secure physical layer key generation schemes: performance and information theoretic limits. In: Proceedings of IEEE ICC, Dresden, 2009. 1-5.
  • 6Aono T, Higuchi K, Ohira T, et al. Wireless secret key generation exploiting reactance-domain scalar response of multipath fading channels. IEEE Trans Anten Propag, 2005, 53: 3776-3784.
  • 7Czylwik, A. Downlink beamforming for mobile radio systems with frequency division duplex. In: Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2000. 72-76.
  • 8Steinbauer M, Molisch A F, Bonek E. The double-directional radio channel. IEEE Anten Propag, 2001, 43: 51-63.
  • 9Liang Y C, Chin F, Kot A. Downlink channel covariance matrix (DCCM) estimation for FDD SDMA. In: Proceedings of IEEE Vehicular Technology Conference, 2002. 2382-2386.
  • 10Goldreich 0, Ron D, Sudan M. Chinese Remaindering with Errors. IEEE Trans Inform Theory, 2000, 46: 1330-1338.

共引文献784

同被引文献25

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部