期刊文献+

基于MapReduce的合成孔径雷达后向投影快速成像方法 被引量:2

A Fast Imaging Method by Synthetic Aperture Radar Back Projection Based on MapReduce
下载PDF
导出
摘要 针对雷达大场景高分辨率高精度快速成像的应用需求,提出一种基于MapReduce的合成孔径雷达后向投影快速成像方法,将方位向成像任务划分成若干个成像单元,进行分布式并行化方位向成像计算,最后将所有成像单元的计算结果进行相参累加。该方法对每个脉冲数据标上天线阵元的位置信息,使得各个脉冲数据可以并行补偿相位;采用相等脉冲数划分成一个数据块的方式提高计算效率和实现负载均衡;设置Combiner函数对成像单元内的计算结果进行提前聚合,解决后期聚合时间较长的问题。实验验证了该方法的有效性,在保证成像准确的前提下,该方法的方位向成像在4台物理计算机搭建的分布式计算平台中进行,其计算速度是单机计算的后向投影方位向成像方法的3.7倍,可见该方法可以实现合成孔径雷达大场景高分辨率高精度快速成像。 Aiming at the application requirements of fast imaging of large radar scenes, high-resolution and high-precision, a fast imaging method of synthetic aperture radar back projection based on MapReduce was proposed. The azimuth imaging task was divided into several imaging units for distributed parallel computing, and finally reduced the results of all the imaging units by coherent accumulation. The method marked each pulse data with the position information of the antenna array element, so that each pulse data could be compensated the phase in paralleling. The method of dividing the equal number pulses into a data block improved the calculation efficiency and achieved load balancing. The Combiner function was set up to reduce the calculated results in the imaging unit in advance, solving the time-consuming problem in the late stage. The effectiveness of the proposed method is verified by experiments. Under the premise of ensuring accurate imaging, the azimuth imaging of the proposed method is carried out in a distributed computing platform built by 4 physical computers, and its calculation speed is 3.7 times that of the backward projection azimuth imaging method calculated by a single machine. It can be seen that the proposed method can achieve fast imaging of large scenes, high-resolution and high-precision of synthetic aperture radar.
作者 李长树 廖可非 欧阳缮 蒋俊正 杜毅 LI Chang-shu;LIAO Ke-fei;OUYANG Shan;JIANG Jun-zheng;DU Yi(School of Information and Communication,Guilin University of Electronic Technology,Guilin 541004,China;State and Local Joint Engineering Research Center for Satellite Navigation and Location Service(Guilin University of Electronic Technology),Guilin 541004,China)
出处 《科学技术与工程》 北大核心 2020年第11期4389-4394,共6页 Science Technology and Engineering
基金 国家自然科学基金(61631019,61701128,61871425) 广西自然科学基金(2017GXNSFBA198032) 广西科技厅项目(桂科AA17202048,桂科AD18281061) 桂林电子科技大学研究生教育创新计划(2019YCXS030)。
关键词 MAPREDUCE 后向投影算法 雷达成像 分布式计算 MapReduce back projection algorithm radar imaging distributed computing
  • 相关文献

参考文献10

二级参考文献73

  • 1章志刚,吉根林.基于迭代式MapReduce的Apriori算法设计与实现[J].华中科技大学学报(自然科学版),2012,40(S1):9-12. 被引量:8
  • 2林翊青,李景文.大距离徙动情况下距离多普勒(RD)算法与后向投影(BP)算法的比较[J].雷达科学与技术,2004,2(6):349-354. 被引量:8
  • 3黄倩,王岩飞,张冰尘,苗慧.一种新的各向异性扩散SAR相干斑抑制算法[J].电子学报,2006,34(9):1553-1557. 被引量:6
  • 4卡明,洪文,胡东辉,等,译.合成孔径雷达成像-算法与实现[M].北京:电子工业出版社,2007.
  • 5Sanders J,Kandrot E.GPU高性能编程CUDA实战[M].聂雪军,译.北京:机械工业出版社,2011.
  • 6GUHA S. KRISNAN S. VENKATASUBRAMANIAN S. Data Visualization and Mining Using the GPU [C]//Proceedings of SIGKDD. [So 1. J :ACM. 2005: 1310-1319.
  • 7HARTLEY T D R. CATALYUREK U. RUIZ A. et al. Biomedical Image Analysis on a Cooperative Cluster of GPUs and Multicores[CJII 22nd ACM International Conference on Supercomputing. Island of Kos , Greece: ACM. 2008: 15-25.
  • 8CLEMENTE C. BISCEGLIE M D. SANTO MD. et al. Processing of Synthetic Aperture Radar Data with GPGPU[C]// IEEE Workshop on Signal Processing Systems. Tampere , Finlandj s. n. J. 2009:309-314.
  • 9NING x?, YEH Chunrnao , ZHOU Bin. et al. Multiple-GPU Accelerated Range-Doppler Algorithm for Synthetic Aperture Radar Imaging[ CJ II IEEE International Radar Conference. Kansas City. MO. USA: [so n. J. 2011:698-701.
  • 10ANDERSSON L E. On the Determination of a Function from Spherical Averages [J]. SIAM Journal on Mathematical Analysis. 1988. 19(1) :214-232.

共引文献43

同被引文献8

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部