期刊文献+

ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR THE CHAFEE-INFANTE EQUATION

下载PDF
导出
摘要 In higher dimension,there are many interesting and challenging problems about the dynamics of non-autonomous Chafee-Infante equation.This article is concerned with the asymptotic behavior of solutions for the non-autonomous Chafee-Infante equation∂u∂t−Δu=λ(t)(u−u3)in higher dimension,whereλ(t)∈C1[0,T]andλ(t)is a positive,periodic function.We denoteλ1 as the first eigenvalue of−Δφ=λφ,x∈Ω;φ=0,x∈∂Ω.For any spatial dimension N≥1,we prove that ifλ(t)≤λ1,then the nontrivial solutions converge to zero,namely,limt→+∞u(x,t)=0,x∈Ω;ifλ(t)>λ1 as t→+∞,then the positive solutions are"attracted"by positive periodic solutions.Specially,ifλ(t)is independent of t,then the positive solutions converge to positive solutions of−ΔU=λ(U−U^3).Furthermore,numerical simulations are presented to verify our results.
作者 Haochuan HUANG Rui HUANG 黄浩川;黄锐(School of Mathematics and Big Data,Foshan University,Foshan 528000,China;School of Mathematical Sciences,South China Normal University,Guangzhou 510631,China)
出处 《Acta Mathematica Scientia》 SCIE CSCD 2020年第2期425-441,共17页 数学物理学报(B辑英文版)
基金 The research of R.Huang was supported in part by NSFC(11971179,11671155 and 11771155) NSF of Guangdong(2016A030313418 and 2017A030313003) NSF of Guangzhou(201607010207 and 201707010136).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部