期刊文献+

Effects of SO2 and H2O on low-temperature NO conversion over F-V2O5-WO3/TiO2 catalysts 被引量:4

原文传递
导出
摘要 F-V2 O5-WO3/Ti02 catalysts were prepared by the impregnation method.As the content of F ions increased from 0.00 to 0.35 wt.%,the NO conversion of F-V2 O5-WO3/TiO2 catalysts initially increased and then decreased.The 0.2 F-V2 O5-WO3/TiO2 catalyst(0.2 wt.%F ion)exhibited the best denitration(De-NOx)performance,with more than 95%NO conversion in the temperature range 160-360℃,and 99.0%N2 selectivity between 110 and 280℃.The addition of an appropriate amount of F ions eroded the surface morphology of the catalyst and reduced its grain size,thus enhancing the NO conversion at low temperature as well as the sulfur and water resistance of the V2 O5-WO3/Ti02 catalyst.After selective catalytic reduction(SCR)reaction in a gas flow containing SO2 and H2 O,the number of NH3 adsorption sites,active component content,specific surface area and pore volume decreased to different degrees.Ammonium sulfate species deposited on the catalyst surface,which blocked part of the active sites and reduced the NO conversion performance of the catalyst.On-line thermal regeneration could not completely recover the catalyst activity,although it prolonged the cumulative life of the catalyst.In addition,a mechanism for the effects of S02 and H2 O on catalyst NO conversion was proposed.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第4期253-261,共9页 环境科学学报(英文版)
基金 supported by the National Key Research and Development Program of China(No.2017YFC0210303) the Key Research and Development Program of Hebei province of China(No.19273706D) the Beijing Millions of Talents Project(No.2018A36) the National Natural Science Foundation of China(No.21607009) the Youth Core Plan of Beijing Academy of Science and Technology(No.YC201806)
  • 相关文献

参考文献3

二级参考文献47

  • 1Zhang S. L. , Li H. Y. , Zhong Q. , Appl. Catal. A: Gen. , 2012, 435/436, 156-162.
  • 2Li H. Y. , Zhang S. L. , Zhong Q. , J. Colloid Interface Sci. , 2013, 402, 190-195.
  • 3PanY. X., ZhaoW., ZhongQ., CaiW., LiH. Y., J. Environ. Sci.,2013,25(8), 1703-1711.
  • 4Zhao W. , Zhong Q. , Pan Y. X. , Zhang R. , Chem. Eng. J. , 2013, 228, 815-823.
  • 5Shu Y. , Wang H. C. , Zhu J. W. , Zhang F. , Chem. Res. Chinese Universities, 2014, 30(6) , 1005-1010.
  • 6ShenB. X., LiuT., ZhaoN., YangX. Y., DengL. D., J. Environ. Sci., 2010, 22(9), 1447-1454.
  • 7Amiridis M. D., Wachs I. E., Deo G., Jehng J. M., Kim D. S., J. Catal., 1996, 161(1), 247-253.
  • 8LeeK. J., KumarP. A., MaqboolM. S., RaoK. N., SongK. H., Hall. P.,Appl. Catal. B: Environ.,2013, 142/143,705- 717.
  • 9LeeK. J. , Maqbool M, S. , Kumar P. A. , Song K. H. , Hall. P. , Catal. Lett. , 2013, 143(10), 988-995.
  • 10Chen L. , Li J. H. , Ge M. F. , Environ. Sci. Technol. , 2010, 44(24), 9590-9596.

共引文献37

同被引文献41

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部