摘要
近期,以深度学习为代表的表示学习不仅为机器学习算法提供更好的性能,同时也为知识表示提供了新思路。引入深度学习的知识表示学习实现了实体和关系的分布式表示,不仅提高了计算效率,还解决了传统三元组表示中会出现的数据稀疏问题。本文归纳和总结了知识表示学习的最新研究进展和应用方式,并且指出了知识表示学习面临的主要挑战以及未来可能实现的解决方案。
Recently,representation learning represented by deep learning not only provides better performance for machine learning algorithms,but also provides new ideas for knowledge representation.The introduction of deep learning knowledge indicates that learning achieves a distributed representation of entities and relationships,which not only improves computational efficiency,but also solves the problem of data sparsity that occurs in traditional triples representations.This paper summarizes the latest research progress and application methods of knowledge representation learning,and points out the main challenges of knowledge representation learning and possible solutions in the future.
作者
王子悦
陈华辉
WANG Zi-yue;CHEN Hua-hui(Department of Information Science and Technology,Ningbo University,Ningbo 315211,China)
出处
《无线通信技术》
2019年第4期55-60,共6页
Wireless Communication Technology
关键词
知识图谱
表示学习
知识表示
深度学习
knowledge graph
representation learning
knowledge representation
deep learning