期刊文献+

知识表示学习综述 被引量:3

A Review of Knowledge Representation Learning
下载PDF
导出
摘要 近期,以深度学习为代表的表示学习不仅为机器学习算法提供更好的性能,同时也为知识表示提供了新思路。引入深度学习的知识表示学习实现了实体和关系的分布式表示,不仅提高了计算效率,还解决了传统三元组表示中会出现的数据稀疏问题。本文归纳和总结了知识表示学习的最新研究进展和应用方式,并且指出了知识表示学习面临的主要挑战以及未来可能实现的解决方案。 Recently,representation learning represented by deep learning not only provides better performance for machine learning algorithms,but also provides new ideas for knowledge representation.The introduction of deep learning knowledge indicates that learning achieves a distributed representation of entities and relationships,which not only improves computational efficiency,but also solves the problem of data sparsity that occurs in traditional triples representations.This paper summarizes the latest research progress and application methods of knowledge representation learning,and points out the main challenges of knowledge representation learning and possible solutions in the future.
作者 王子悦 陈华辉 WANG Zi-yue;CHEN Hua-hui(Department of Information Science and Technology,Ningbo University,Ningbo 315211,China)
出处 《无线通信技术》 2019年第4期55-60,共6页 Wireless Communication Technology
关键词 知识图谱 表示学习 知识表示 深度学习 knowledge graph representation learning knowledge representation deep learning
  • 相关文献

参考文献4

二级参考文献222

  • 1刘克彬,李芳,刘磊,韩颖.基于核函数中文关系自动抽取系统的实现[J].计算机研究与发展,2007,44(8):1406-1411. 被引量:59
  • 2史树明.自动和半自动知识提取[J].中国计算机学会通讯,2013.9(8):65-73.
  • 3张坤.面向知识图谱的搜索技术(搜狗)[EB/OL].[2015-02-18].http://www.cipsc.org.cn/kgl/.
  • 4李涓子.知识图谱:大数据语义链接的基石[EB/OL].[2015-02-20].http://www.cipsc.org,cn/kg2/.
  • 5Miller G A. WordNet: A lexical database for English [J]. Communications of the ACM, 1995, 38(11): 39-41.
  • 6Bollacker K, Evans C, Paritosh P, et al. Freebase: A collaboratively created graph database for structuring human knowledge [C] //Proe of KDD. New York: ACM, 2008: 1247-1250.
  • 7Miller E. An introduction to the resource description framework [J]. Bulletin of the American Society for Information Science and Technology, 1998, 25(1): 15-19.
  • 8Bengio Y. Learning deep architectures for AI [J]. Foundations and Trends in Machine Learning, 2099, 2 (1) 1-127.
  • 9Bengio Y, Courville A, Vincent P. Representation learning: A review and new perspectives [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828.
  • 10Turian J, Ratinov L, Bengio Y. Word representations: A simple and general method for semi-supervised learning [C]// Proc of ACL. Stroudsburg, PA: ACL, 2010:384-394.

共引文献1497

同被引文献28

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部