摘要
针对瓦斯涌出量受其他因素的影响,并且存在着复杂的非线性关系,将核极端学习机与改进的万有引力算法相结合建立基于改进万有引力算法-KELM的瓦斯涌出量预测模型(IGSA-KELM瓦斯涌出量预测模型)。首先将输入样本作为KELM网络的输入量,然后采用改进的万有引力搜索算法对KELM网络的核参数和输出权值寻优,优化KELM网络的性能。测试结果表明,基于该方法预测的绝对瓦斯涌出量误差在0.1 m^3/min以内,提高了预测精度和预测效率。
In view of the influence of other factors on gas emission,and there is a complex non-linear relationship,a gas emission prediction model(igsa-kelm) based on the improved universal gravitation algorithm kelm is established by combining the nuclear extreme learning machine and the improved universal gravitation algorithm.Firstly,the input sample is taken as the input of kelm network,and then the core parameters and output weights of kelm network are optimized by the improved universal gravitation search algorithm to optimize the performance of kelm network.The test results show that the absolute gas emission error predicted based on this method is within 0.10 m^3/min,which improves the prediction accuracy and efficiency.
作者
王居尧
王凯君
WANG Ju-yao;WANG Kai-jun(Lu'an Mining Group,Changzhi 046204,China)
出处
《煤》
2020年第5期13-16,共4页
Coal
基金
国家自然科学基金资助项目(51974151)。
关键词
瓦斯涌出量
预测
改进万有引力
核极端学习机
gas emission
prediction
improved gravitation
nuclear extreme learning machine