期刊文献+

子空间分布自适应的传感器在线漂移补偿算法

Online Sensor Drift Compensation Algorithm Based on Subspace Distribution Adaptation
下载PDF
导出
摘要 传感器漂移补偿方法针对电子鼻系统中气体传感器的输出响应随使用时间延伸发生改变,进而导致气体识别准确率下降这一问题提出,大多针对离线场景,在实际应用中存在定期进行系统人工校正所造成的成本高耗时长等困难。因此,本文提出了一种子空间分布自适应的传感器在线漂移补偿算法。算法通过构造测地线核将原始样本与漂移样本嵌入到流形子空间,然后引入条件分布自适应和流形正则化以减小样本特征的分布差异,并利用结构风险最小化原则构建分类器。分类模型的在线更新通过将每轮分类后获得预测标签的漂移样本引入到下一轮的模型训练过程中以实现。在公开数据集上进行漂移补偿实验,结果表明,提出的算法提高了漂移样本的分类准确率,有效地实现了传感器的在线漂移补偿。 Sensor drift compensation algorithm is aimed at the problem that output response of gas sensors in electronic nose system changes with the use of time,which leads to a decrease in accuracy of gas identification.Most of those algorithms are offline and not suitable for practical applications because of the high cost and time consuming of manual system calibrate periodically.For this problem,an online drift compensation algorithm based on subspace distribution adaptation(ODCSDA)is proposed.In ODCSDA,original samples and drift samples are embedded into manifold subspace by constructing a geodesic flow kernel firstly.Then conditional distribution adaptation and manifold regularization is introduced to reduce the difference of feature distributions between samples.Finally,a classifier is constructed by structural risk minimization principle.The online update of the classification model is implemented by introducing the drift samples which have obtained predicted labels after each round of classification into the next round of model training.ODCSDA is used to perform drift compensation experiments on a public dataset.Results show that ODCSDA can improve the classification accuracy of drift data and realize online sensor drift compensation effectively.
作者 陶洋 杨皓诚 梁志芳 TAO Yang;YANG Hao-cheng;LIANG Zhi-fang(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing,400065,P.R.China)
出处 《新一代信息技术》 2019年第24期6-14,共9页 New Generation of Information Technology
基金 重庆市基础研究与前沿探索项目(项目编号:cstc2018jcyjAX0549) 重庆市教育委员会科学技术研究项目(项目编号:KJQN201800617)。
关键词 电子鼻 在线漂移补偿 流形子空间 条件分布自适应 Electronic nose Online drift compensation Manifold subspace Conditional distribution adaptation
  • 相关文献

参考文献1

二级参考文献13

  • 1史波林,赵镭,支瑞聪,席兴军,朱大洲.应用电子鼻判别西湖龙井茶香气品质[J].农业工程学报,2011,27(S2):302-306. 被引量:41
  • 2闫玲玲,杨秀芬.蜂蜜的化学组成及其药理作用[J].特种经济动植物,2005,8(2):40-40. 被引量:84
  • 3叶云,梁超香,李军生,蒋现德,刘敏燕.利用同工酶技术检测蜂蜜品质的新方法[J].食品科学,2006,27(6):177-178. 被引量:16
  • 4顾雪竹,李先端,钟银燕,毛淑杰.蜂蜜的现代研究及应用[J].中国实验方剂学杂志,2007,13(6):70-72. 被引量:102
  • 5J. F. Cotte,H. Casabianca,B. Giroud,M. Albert,J. Lheritier,M. F. Grenier-Loustalot.Characterization of honey amino acid profiles using high-pressure liquid chromatography to control authenticity[J].Analytical and Bioanalytical Chemistry.2004(5)
  • 6Nabarun Bhattacharyya,Sohan Seth,Bipan Tudu,Pradip Tamuly,Arun Jana,Devdulal Ghosh,Rajib Bandyopadhyay,Manabendra Bhuyan.Monitoring of black tea fermentation process using electronic nose[J].Journal of Food Engineering.2006(4)
  • 7Murat Tosun.Detection of adulteration in honey samples added various sugar syrups with 13 C/ 12 C isotope ratio analysis method[J]. Food Chemistry . 2013 (2-3)
  • 8Adnan Simsek,Mine Bilsel,Ahmet C. Goren.13 C/ 12 C pattern of honey from Turkey and determination of adulteration in commercially available honey samples using EA-IRMS[J]. Food Chemistry . 2011 (4)
  • 9A new neural network approach classifies olfactory signals with high accuracy[J]. Food Quality and Preference . 2003 (5)
  • 10Philip R.C. Nelson,Paul A. Taylor,John F. MacGregor.Missing data methods in PCA and PLS: Score calculations with incomplete observations[J]. Chemometrics and Intelligent Laboratory Systems . 1996 (1)

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部