期刊文献+

周期性分析下的城市高分遥感影像同形态建筑物群提取 被引量:3

Extraction of Homomorphic Buildings from Urban High-resolution Remote Sensing Imagery Based on Periodic Analysis
下载PDF
导出
摘要 针对遥感影像数据建筑物提取算法目标单一、运算复杂等问题,提出了一种利用周期性实现城市一定范围内建筑群提取的方法。通过图像分割、轮廓检测、矩形检测和辅助特征分析,得到建筑群初提取结果,再结合对称性分析、间距统计、灰度震荡规律、属性统计4种方法,分析建筑群周期性排列规律,剔除干扰地物和零散建筑,实现城市某区域同形态建筑群目标提取。在进行建筑物提取时以此作为结束,可以提高检测效率。实验表明,通过探索建筑群周期性排列模式,可准确有效地从遥感图像中识别出规则、集群分布的矩形类建筑物,同形态建筑物群提取精度可达到80%以上。 Aiming at the problems of single extraction target and complex operation of building extraction algorithm in remote sensing image data,a method of extracting buildings within a certain range of a city by periodicity is proposed.The results of initial extraction of buildings are obtained through image segmentation,contour detection,rectangle detection and auxiliary feature analysis,and then the periodic arrangement of buildings is analyzed by combining symmetry analysis,interval statistics,gray scale oscillation rule and attribute statistics to eliminate disturbing objects and scattered buildings,so as to realize the target extraction of homomorphic buildings in a certain area of a city.Taking this as the end of building extraction can improve the detection efficiency.Experimental results show that the regular and clustered rectangular buildings can be accurately and effectively identified from remote sensing images by exploring the periodic arrangement pattern of buildings,and the extraction accuracy of homomorphic buildings can reach more than 80%.
作者 史鹏程 叶勤 戴激光 SHI Pengcheng;YE Qin;DAI Jiguang(College of Surveying and Geo-informatics,Tongji University,Shanghai 200092,China;School of Geomatics,Liaoning Technical University,Fuxin,Liaoning 123000,China)
出处 《遥感信息》 CSCD 北大核心 2020年第2期100-105,共6页 Remote Sensing Information
基金 国家自然科学基金项目(41771480)。
关键词 建筑物提取 同形态建筑物群 周期性 图像分割 矩形检测 building extraction homomorphic building group periodicity image segmentation rectangle detection
  • 相关文献

参考文献3

二级参考文献36

  • 1虢建宏,田庆久,吴昀昭.遥感影像阴影多波段检测与去除理论模型研究[J].遥感学报,2006,10(2):151-159. 被引量:50
  • 2梅雪良,张祖勋,张剑清.基于约束满足网络的建筑物阴影结构提取[J].武汉测绘科技大学学报,1996,21(3):265-268. 被引量:6
  • 3KimJ B, Kim H J. Efficient region-based motion segmentation for a video monitoring system[ J]. Pattern Recognition Letter,2003,24:113-128.
  • 4Barrow H G, Tenenbanm J M. Recovering Intrinsic Scene Characteristics from Images [ M ]. Computer Vision Systems. New York : Academic Press, 1988.
  • 5Geusebroek J, Boomgaard R, Smeulders A. Color invariance [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001,23 : 1338-1350.
  • 6Martel-Brisson N, Zaccarin A. Moving cast shadow detection from Gaussian mixture shadow model [ C ]//Proc. IEEE Conf. Computer Vision and Pattern Recognition. Washington, DC, USA : IEEE Press,2005 : 643-648.
  • 7Martel-Brisson N, Zaccarin A. Learning and removing cast shadows through a multidistribution approach [ J ]. IEEE Trans. Pattern Anal. Mace Intell,2007,29(7 ) :1133-1146.
  • 8Cucchiara R, Grana C, Piccardi M, et al. Detecting moving objects, ghosts, and shadows in video treams [ J ] . IEEE Trans. Pattern Anal. Mach. Intel1,2003,25 (10) :1337-1342.
  • 9Salvador E, Cavallare A, Ebrahimi T. Cast shadow segmentation using invariant color features [ J]. Comput. Vis. Image Understand, 2004,95 : 238 -259.
  • 10Zhang W, Fang X Z, Yang X. Moving cast shadows detection based on ratio edge [ C ]//Proc. 18th Int. Conf. Pattern Recognition. Washington, DC, USA: IEEE Press,2006 : 73-76.

共引文献36

同被引文献26

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部