期刊文献+

基于极限学习机的大坝多测点模型分析

Multiple Points Dam Analysis Model Based on Extreme Learning Machine
下载PDF
导出
摘要 与单测点模型相比,大坝多测点模型能估计各测点间的空间联系,通过一个模型反映大坝整体变形态势。针对传统线性多测点回归模型中因子众多,回归方程中自变量多重共线性的问题,提出利用极限学习机(Extreme Learning Machine,ELM)建立非线性大坝多测点位移模型。实例表明,基于ELM的大坝多测点变形预报模型可在保证建模精度的基础上有效提高建模运算效率。 Compared with single model,multiple points dam model can reflect the connection of each deformation point on a dam and make prediction about the whole dam with one model.To solve the problem of multicollinearity in the traditional linear regression model,Extreme Learning Machine are proposed in the modeling of dam deformation.The results of the case study in this paper show that the multiple points dam model based on ELM isstable and much more efficient.
作者 邵楠 郑尧 Shao Nan;Zheng Yao(Shenyang Geotechnical Investigation&Surveying Research Institute,Shenyang 110004,China)
出处 《城市勘测》 2020年第2期169-172,共4页 Urban Geotechnical Investigation & Surveying
关键词 大坝变形预报 多测点模型 神经网络模型 极限学习机(ELM) dam deformation prediction multiple points model neural networks model extreme learning machine
  • 相关文献

参考文献8

二级参考文献43

共引文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部