摘要
从分析被积函数本身所具有的性质出发,总结出一系列具有典型意义的广义积分求法应用实例,其中包括牛顿-莱布尼茨公式、换元积分法和分部积分法等基本方法,以及利用函数的对称性、Γ函数和β函数的性质、泰勒公式的展开等方法,可以为复杂的广义积分函数计算提供简化、快速计算方法和思路.
Based on the analysis of the properties of the integrand function itself,a series of typical examples of application of generalized integral method are summarized,including the basic methods such as Newton-Leibniz formula,integral method of substitution and integral method of division,as well as the methods using the symmetry of the function,the properties of theΓ,βfunction,the expansion of Taylor formula,etc,which can provide simplified and fast calculation methods and ideas for the calculation of complex generalized integral function.
作者
高亮
GAO Liang(School of Information Engineering,Anhui Institute of International Business,Hefei 231131,China)
出处
《高师理科学刊》
2020年第5期71-75,共5页
Journal of Science of Teachers'College and University
基金
安徽国际商务职业学院2018年度校级教学质量工程项目(2018KC03)——精品线下开放课程《高等数学》。
关键词
广义积分
函数性质
参变量
generalized integral
function property
parametric variable