期刊文献+

基于临床信息的logistic回归模型在乳腺影像报告和数据系统4类中对病灶良恶性的鉴别价值 被引量:1

Logistic regression models based on clinical information in discriminating breast malignant lesions from benign lesions of Breast Imaging Reporting and Data System 4
下载PDF
导出
摘要 目的:探讨基于患者临床信息的logistic回归模型在乳腺影像报告和数据系统(Breast Imaging Reporting and Data System,BI-RADS)4类中鉴别病灶良恶性的价值。方法:回顾并收集经过病理学检查证实的BI-RADS4类乳腺病灶患者221例(良性133例,恶性88例)的临床信息。采用logistic回归分析筛选能够鉴别病灶良恶性的临床信息特征,建立回归模型。比较BI-RADS联合模型与单独采用BI-RADS分类在鉴别乳腺良恶性病灶上的区别。结果:经logistic回归分析,发现9个临床信息特征与乳腺良恶性病灶相关,其中是否触及病灶(OR=7.196)、病灶是否固定(OR=10.150)、病灶最大径是否>2 cm(OR=4.208)等3个特征有较高的危险度(P<0.05)。单独采用BI-RADS分类,其诊断灵敏度为86.3%、特异度为69.9%、准确率为76.5%;将BI-RADS分类联合回归模型,其灵敏度为88.6%、特异度为73.7%、准确率为79.6%。结论:BI-RADS分类联合基于患者临床信息的logistic回归模型有助于提高鉴别乳腺病灶良恶性的诊断效能,减少不必要的良性活检。 Objective:To explore the value of logistic regression model based on subjects’clinical information in discriminating breast malignant lesions from benign lesions of Breast Imaging Reporting and Data System(BI-RADS)4.Methods:Retrospectively 221 subjects(133 benign and 88 malignant)confirmed by histopathology were recruited whose BI-RADS grade was 4 and the clinical information were collected.Logistic regression analysis was used to screen the clinical information features that can discriminate malignant from benign lesions and a regression model was established.The comparison was made between regression model combined with BI-RADS and BI-RADS classification alone for differential diagnosis between malignant and benign lesions.Results:Nine clinical information features were found to be related to malignant and benign lesions.Three features of whether the lesion can be touched(OR=7.196),whether the lesion position was fixed(OR=10.150),and whether the maximum diameter of the lesion was more than 2 cm(OR=4.208)have a higher risk than other clinical information(P<0.05).Using BI-RADS classification alone,the diagnostic sensitivity,specificity and accuracy were 86.3%,69.9%and 76.5%;the diagnostic sensitivity,specificity and accuracy of regression model combined with BI-RADS were 88.6%,73.7%and 79.6%.Conclusion:Logistic regression model based on subjects’clinical information combined with BI-RADS classification is helpful to improve the diagnostic efficiency of malignant and benign lesions and further to reduce unnecessary benign biopsy.
作者 林晓佳 马乐 蔡裕兴 陈卫国 LIN Xiaojia;MA Le;CAI Yuxing;CHEN Weiguo(Department of Radiology,Nanfang Hospital,Southern Medical University,Guangzhou 510515,Guangdong Province,China)
出处 《肿瘤影像学》 2020年第2期85-89,共5页 Oncoradiology
基金 广东省自然科学基金(2019A1515011168) 广东省医学科学技术研究基金(B2018017)。
关键词 乳腺病灶 良恶性 LOGISTIC分析 鉴别模型 Breast lesions Malignant and benign Logistic regression analysis Discriminating model
  • 相关文献

参考文献2

二级参考文献18

  • 1Gazinska P, Grigoriadis A, Brown JP, et al. Comparison of bas- al-like triple-negative breast cancer defined by morphology, im- munohistochemistry and transcriptional profiles. Mod Pathol, 2013,26(7) :955-966.
  • 2Ophir J, Cespedes I, Ponnekanti H, et al. Elastography: A quantitative method for imaging the elasticity of biologic tissues. Ultrasonic Imaging, 1991,13(2) :111 134.
  • 3Wojcinski S, Farrokh A, Weber S, et al. Muhicenter studdy of ultrasound real-time tissue elastography in 799 cases for the as- sessment of breast lesions: Improved diagnostic performance by combining the BI-RADS-US classification system with sonoelas- togrraphy. Ultraschall Med, 2010,31(5) :484-491.
  • 4Evans A, Whelehan P, Thomson K, et al. Differentiating benign from malignant solid breast masses: Value of shear wave elastog- raphy according to lesion stiffness combined with greyscale ultra- sound according to BI-RADS classification. Br J Cancer, 2012, 107(2) :224 229.
  • 5Sadigh G, Carlos RC, Neal CH, et al. Ultrasonographic differen tiation of malignant from breast lesions: A meta-analytic compari-son of elasticity and BIRADS scoring. Breast Cancer Res Treat, 2012, 133(1) :23 35.
  • 6Rudnko OV, Sarvazyan AP, Emelianov SY. Acoustic radiation force and streaming induced by focused nonlinear ultrasound in a dissipative medium. J Acoust Soc Am, 1996,99(5):2791-2798.
  • 7Fatemi M, Greenleaf JF. Ultrasound-stimulated vibroacousticspectrography. Science, 1998,280(5360) :82 -85.
  • 8Fatemi M, Greenlea{ IF. Vibro-acoustography: An imaging mo- dality based on ultrasound-stimulated acoustic emiss on. Proc NatlAcadSci USA, 1999,96(12) :6603-6608.
  • 9罗葆明,欧冰,智慧.乳腺超声弹性成像检查的影响因素及解决策略[J].中国医学科学院学报,2008,30(1):112-115. 被引量:60
  • 10智慧,肖晓云,杨海云,吴欢,罗葆明.BI-RADS诊断标准与UE结合对乳腺肿物诊断价值的探讨[J].中国超声医学杂志,2011,27(4):310-312. 被引量:34

共引文献23

同被引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部