期刊文献+

基于BP神经网络的节能车弯道降速数学模型分析 被引量:2

Curve Deceleration Analysis of Energy-saving Vehicle Based on BP Neural Network Model
下载PDF
导出
摘要 针对节能车为有效降低燃油消耗率,在整车经过弯道时,发动机需怠速滑行的特点,对GPS车载数据采集系统得到的数据进行弯道部分数据提取。基于提取出的北京金港国际赛车场150余组数据,通过引入BP神经网络算法的方式,建立了节能车弯道降速的BP神经网络预测模型。在经遗传算法优化后,拟合优度的结果显示,BP神经网络的预测较为接近真实情况,预测效果较为良好,可以用于节能车滑行过弯速度变化情况预测,并为不同赛道不同工况下整车速度分配提供参考依据。 Aiming at the characteristic that the engine needs to idle in order to effectively reduce the fuel consumption rate of the energy-saving vehicle when the vehicle passes through the curve, the data obtained by the GPS vehicle data acquisition system are extracted from the curve parts. Based on over 150 sets of data extracted from Beijing Jingang International Circuit, a BP network prediction model of deceleration in the curve for energy-saving vehicle is established by employing the BP neural network algorithm. After optimized by genetic algorithm, the results of goodness of fit indicate that the prediction of BP neural network is relatively approximated to the reality, and the prediction effect relatively good. And the BP network model can be used for predicting the speed change for energy-saving vehicle sliding over curves, providing a reference basis for vehicle speed distribution at different situation on different racing tracks.
作者 姜长文 魏福龙 孙航 曾小华 Jiang Changwen;Wei Fulong;Sun Hang;Zeng Xiaohua(School of Automotive Engineering,Jilin University,Jilin Changchun 130022;State Key laboratory of Automotive Simulation and Control,Jilin University,Jilin Changchun 130022)
出处 《汽车实用技术》 2020年第10期140-144,共5页 Automobile Applied Technology
基金 国家自然科学基金项目(51305155) 国家重点研发项目(2018YFB0105900) 吉林大学创新创业训练计划资助项目《HONDA节能车速度优化节能控制策略研究与应用》(201910183713)。
关键词 节能车 神经网络 速度优化 Energy-saving vehicle Neural network Speed optimization
  • 相关文献

参考文献9

二级参考文献61

共引文献325

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部