期刊文献+

基于多时间尺度的深度学习行为识别研究

下载PDF
导出
摘要 卷积神经网络在图像领域取得的成功,也促使图像域的方法和卷积神经网络结构扩展到视频域,推动了包括视频行为识别在内的视频域任务的发展。虽然卷积神经网络在行为识别方面得到了不错的成绩,但是就目前来看,卷积神经网络的深度信息都来自于单时间尺度,比如单一视频帧、一定数量的视频帧叠加的堆叠帧或者是一段视频以固定长度分割等。但是从实际来看,一个实际行为的判断应该包括不同时间尺度的信息,所以用于行为识别的视频帧也不应该是单时间尺度的视频帧。所以本文的中心思路是利用多时间尺度来进行行为识别。
出处 《科学技术创新》 2020年第14期93-94,共2页 Scientific and Technological Innovation
  • 相关文献

参考文献5

二级参考文献17

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部