期刊文献+

数字化、广义统计与数族协同 被引量:3

Digitalization,Generalized Statistics and Digital Synergism
下载PDF
导出
摘要 互联网技术革命已经收敛到数据资源、数据生产要素、数据资产,正在通过新科学、新技术、新产业推动人类社会的巨大进步。本文针对互联网技术革命作用的基本架构做出系统研究,提出数字化、全面量化、广义统计、数族协同一系列关键领域的分析研究,追求解析互联网技术革命的重大发展趋势、重要途径和主要科学手段,以及走向智能化的设施支撑和社会生态系统平台的优化及演化作用,特别阐述统计学科在互联网技术革命中基础地位和巨大发展空间,为统计实践工作和战略定位提供理论依据。 Internet technology revolution has converged to data resources,data production factors and data capitalization(data assets),and is promoting the great progress of human society through new science,new technology and new industries.This paper makes a systematic research on the basic framework of Internet technology revolution,presents the analysis of a series of core factors like digitization,comprehensive quantification,generalized statistics and digital synergism,and pursues to analyze their development trend,important approaches and main scientific means in Internet technology revolution,as well as the facility support to go intelligent,and the optimization and evolution of social ecosystem platform,especially the fundamental position and huge development potential of statistics in the Internet technology revolution,thus providing the theoretical basis for statistical practice and strategic positioning in China.
作者 赵彦云 Zhao Yanyun
出处 《统计研究》 CSSCI 北大核心 2020年第5期117-128,共12页 Statistical Research
基金 中国人民大学科研基金重大项目“互联网统计学”(17XNLG09)。
关键词 互联网数字化 全面量化 广义统计 数族协同 Internet Digitization Comprehensive Quantification Generalized Statistics Digital Synergism
  • 相关文献

参考文献4

二级参考文献19

  • 1ZAGARIA M,BORTHAKUR D,SARMA J S,et al.Job Scheduling for Multi-User Map Reduce Clusters[R].USA:EECS Department,University of California,2009.
  • 2Hadoop.[EB/OL].[2013-08-24].http://hadoop.apache.org/docs/r1.2.1/capacity_scheduler.html#Overview.
  • 3ZAHARIA M,KONWINSKI A,JOSEPH A D,et al.Improving Map Reduce Performance in Heterogeneous Environments[C]//8th USENIX Symposium on Operation Systems Design and Implementation(OSDI).USA:ASM,2008:7.
  • 4CHAIKEN R,JENKINS B,LARSON P,et al.SCOPE:Easy and Efficient Parallel Processing of Massive Data Sets[J].Proceedings of the VLDB Endowment,2008,1(2):1265-1276.
  • 5ZAHARIA M,CHOWDHURY M,DAS T,et al.Resilient Distributed Datasets:A FaultTolerant Abstraction for in-Memory Cluster Computing[C]//Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation.USA:USENIX Association,2012:2-2.
  • 6XIN R S,ROSEN J,ZAHARIA M,et al.Shark:SQL and Rich Analytics at Scale[C]//Proceedings of the 2013 ACM SIGMOD International Conference on Management of data.USA:ACM Press,2013:13-24.
  • 7GONZALEZ J E,LOW Y,GU H,et al.Power Graph:Distributed Graph-Parallel Computation on Natural Graphs[C]//Proceedings of the 10th USENIX Symposium on Operating Systems Design and Implementation(OSDI).USA:USENIX Association,2012:17-30.
  • 8KREPS J,NARKHEDE N,RAO J.Kafka:A Distributed Messaging System for Log Processing[C]//Proceedings of the 6th International Workshop on Networking Meets Databases(Net DB).USA:ACM Press,2011.
  • 9PENG D,DABEK F.Large-Scale Incremental Processing Using Distributed Transactions and Notifications[C]//Proceedings of the 9th USENIX Symposium on Operating Systems Design and Implementation(OSDI).USA:USENIX Association,2010:1-15.
  • 10GUNDA P K,RAVINDRANATH L,THEKKATH C A,et al.Nectar:Automatic Management of Data and Computation in Datacenters[C]//Proceedings of the 9th USENIX Symposium on Operating Systems Design and Implementation(OSDI).USA:USENIX Association,2010:75-88.

共引文献530

同被引文献48

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部