摘要
研究了分数阶双指数混沌系统的自适应滑模同步问题.通过设计滑模函数和控制器,构造了平方Lyapunov函数进行稳定性分析.利用Barbalat引理证明了同步误差渐近趋于零,获得了系统取得自适应滑模同步的充分条件.数值仿真结果表明:选取适当的控制器及与滑模函数,分数阶双指数混沌系统取得自适应滑模同步.
The problem of self-adaptive sliding mode synchronization control of fractionalorder dual-exponential chaotic systems are studied.The sliding mode function and controller are designed.The system stability is analyzed by constructing a quadratic Lyapunov function.Based on Barbalat lemma,it is proved that the synchronization error tends to zero asymptotically,and the sufficient conditions are arrived for dual-exponential chaotic systems acquire self-adaptive sliding mode synchronization.The research conclusion illustrated the master-slave systems of fractional-order dual-exponential chaotic systems are adaptive sliding mode synchronization if chose proper controller and sliding mode function.
作者
刘敬怀
毛北行
LIU Jing-huai;MAO Bei-xing(Collge of Mathematics,Zhengzhou University of Aeronautics,Zhengzhou 450046,China)
出处
《数学的实践与认识》
北大核心
2020年第7期198-203,共6页
Mathematics in Practice and Theory
基金
国家自然科学基金(11226337,51401182)
航空科学基金(2017ZD55014)
河南省高校重点科研项目(16A110024)资助的课题。
关键词
混沌同步
分数阶
双指数混沌系统
自适应
chaos synchronization
fractional-order
dual-exponential chaotic systems
selfadaptive