摘要
利用有限域Fq上n维向量空间中子空间的相交关系定义了一个(0,1)-矩阵Mq(i:n,k,d),它是矩阵Mq(n,k,d)的推广.最后证明了这个矩阵Mq(i:n,k,d)是一个d-析取矩阵并且具有强容错能力.
A(0,1)-matrix Mq(i:n,k,d) is defined according to intersecting relation of subspaces in n dimensional vector space over finite fields Fq.It is generalization of Mq(n,k,d)and proved that Mq(i:n,k,d) is a d-disjunct matrix with higher degree of error correction.
作者
黄红芳
温新苗
赵春兰
HUANG Hong-fang;WEN Xin-miao;ZHAO Chun-lan(School of Mathematics and Information Science,Zhang Jiakou University,Zhangjiakou 075000,China)
出处
《数学的实践与认识》
北大核心
2020年第7期311-315,共5页
Mathematics in Practice and Theory
关键词
n维有限向量空间
相交关系
矩阵Mq(i:n
k
d)
容错能力
n dimensional vector space over finite fields Fq
intersecting relation
matrix Mq(i:n,k,d)
error correction