期刊文献+

一种基于双忆阻器的文氏桥混沌电路 被引量:4

A Wien-bridge chaotic circuit based on dual memristors
下载PDF
导出
摘要 为了获得更加复杂的非线性特性,在文氏桥电路中引入2个忆阻模型,提出了一种基于双忆阻器的文氏桥混沌电路。在分析该电路系统的局部稳定性时,发现该系统的稳定性不能仅由非零特征根进行确定。在研究该系统随电路参数变化的动力学特征(诸如Lyapunov指数、分岔图及相轨图等)时,该系统表现出复杂的动力学行为,具有双涡旋吸引子和共存分岔等现象。对系统的动力学特性进行硬件实验验证,结果符合预期,能够为忆阻混沌电路的研究提供参考。 In order to obtain more complex nonlinear characteristics,two memristive models were introduced into the Wien-bridge circuit,and a Wein-bridge chaotic circuit based on dual memristors was proposed.When analyzing the local stability of the circuit system,it is found that the stability of the system cannot be determined solely by the nonzero characteristic root.When studying the dynamic characteristics of the system with circuit parameters(such as Lyapunov exponent,bifurcation diagram and phase orbit diagram,etc.),the system exhibits complex dynamic behaviors,with double vortex chaotic attractors and coexistence bifurcation phenomenon.The hardware experiments of the system's dynamic characteristics are verified,and the results are in line with expectations,which can provide a reference for the study of memristive chaotic circuits.
作者 王振 袁方 李玉霞 WANG Zhen;YUAN Fang;LI Yuxia(College of Electrical Engineering and Automation,Shandong University of Science and Technology,Qingdao,Shandong 266590,China)
出处 《中国科技论文》 CAS 北大核心 2020年第4期469-475,共7页 China Sciencepaper
基金 国家自然科学基金资助项目(61973200,91848206,61801271)。
关键词 混沌电路 忆阻器 双涡旋吸引子 共存分岔 chaotic circuit memristor double vortex attractor coexistence bifurcation
  • 相关文献

参考文献4

二级参考文献32

  • 1STRUKOV D B, SNIDER G S, STEWART D R, et al. Memristor-the missing circuit element[J]. Nature, 2008, 453(5): 80-83.
  • 2CHUA L O. The missing memristor found[J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507-519.
  • 3VAYNSHTEYN M and LANIS A. Applications of electrochemical elements in systems of artificial intelligence[J] Natural Science, 2013, 11(10): 45-51.
  • 4ELLA G. TiO2-based memristors and ReRAM materials, mechanisms and models[J]. Semiconductor Science and Technology, 2014, 29(10): 104004-104014.
  • 5SHIN S, KIM K, and KANG S M. Memristor applications for.programmable[J]. IEEE Transactions on Nanotechnology, 2011, 10(2): 266-274.
  • 6Ebong I E and Mazumder P. CMOS and memristor-based[J]. Proceedings of the IEEE, 2012, 100(6): 2050-2060.
  • 7LI Zhijun and ZENG Yicheng. Memristor oscillator based on twin-T network[J].Chinese Physics B, 2013, 22(4): 040502-6.
  • 8VENTRA D M, PERSHIN Y V, and CHUA L O. Circuit elements with memory[J]. Proceedings of the IEEE, 2009, 97(10): 1717-1724.
  • 9MUTHUSWAMY B. Implementing memristor based chaotic circuits[J]. International Journal of Bifurcation and Chaos, 2010, 20(8): 1335-1346.
  • 10EI-SAYED A M A, ELSAID A, NOUR H M, et al. Dynamical behavior, chaos control and synchronization[J]. Communication in Nonlinear Science and NumericalSimulation, 2013, 18(1): 148-170.

共引文献53

同被引文献21

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部