摘要
为了获得更加复杂的非线性特性,在文氏桥电路中引入2个忆阻模型,提出了一种基于双忆阻器的文氏桥混沌电路。在分析该电路系统的局部稳定性时,发现该系统的稳定性不能仅由非零特征根进行确定。在研究该系统随电路参数变化的动力学特征(诸如Lyapunov指数、分岔图及相轨图等)时,该系统表现出复杂的动力学行为,具有双涡旋吸引子和共存分岔等现象。对系统的动力学特性进行硬件实验验证,结果符合预期,能够为忆阻混沌电路的研究提供参考。
In order to obtain more complex nonlinear characteristics,two memristive models were introduced into the Wien-bridge circuit,and a Wein-bridge chaotic circuit based on dual memristors was proposed.When analyzing the local stability of the circuit system,it is found that the stability of the system cannot be determined solely by the nonzero characteristic root.When studying the dynamic characteristics of the system with circuit parameters(such as Lyapunov exponent,bifurcation diagram and phase orbit diagram,etc.),the system exhibits complex dynamic behaviors,with double vortex chaotic attractors and coexistence bifurcation phenomenon.The hardware experiments of the system's dynamic characteristics are verified,and the results are in line with expectations,which can provide a reference for the study of memristive chaotic circuits.
作者
王振
袁方
李玉霞
WANG Zhen;YUAN Fang;LI Yuxia(College of Electrical Engineering and Automation,Shandong University of Science and Technology,Qingdao,Shandong 266590,China)
出处
《中国科技论文》
CAS
北大核心
2020年第4期469-475,共7页
China Sciencepaper
基金
国家自然科学基金资助项目(61973200,91848206,61801271)。
关键词
混沌电路
忆阻器
双涡旋吸引子
共存分岔
chaotic circuit
memristor
double vortex attractor
coexistence bifurcation