期刊文献+

Nehari函数族的偏差性质与拟共形延拓

On the Distortion Property and Quasiconformal Extension of a Nehari Class
原文传递
导出
摘要 研究某一Nehari函数族的偏差性质,得到这类函数族的H?lder连续性及若干偏差定理,同时讨论了该函数类的拟共形延拓问题,并给出拟共形延拓的复伸张估计,推广了杨宗信等人相应的结论. The distortion properties of the Nehari class are investigated,and obtains the H?lder continuity of the function family and some deviation theorems.The quasiconformal extension of the class is also considered,and the dilatation is estimated,the results generalized the corresponding one made by Yang.
作者 谢志春 李东征 XIE Zhi-chun;LI Dong-zheng(Department of Mathematics,Xiamen Institute of Technology,Xiamen 361021,China;Public Course Teaching Department,Xiamen Medical College,Xiamen 361023,China)
出处 《数学的实践与认识》 北大核心 2020年第8期229-233,共5页 Mathematics in Practice and Theory
基金 福建省中青年教师教育科研项目(JAT170807,JAT170812) 厦门工学院科研项目(KY2017004,KY2017009)。
关键词 Nehari函数族 SCHWARZ导数 偏差性质 拟共形延拓 Nehari class Schwarzian derivative distortion property quasiconformal extension
  • 相关文献

参考文献4

二级参考文献22

  • 1CHEN HuaiHui Department of Mathematics, Nanjing Normal University, Nanjing 210097, China.Some new results on planar harmonic mappings[J].Science China Mathematics,2010,53(3):597-604. 被引量:2
  • 2杨宗信,陈纪修.Nehari函数族的偏差定理与拟共形延拓[J].数学年刊(A辑),2004,25(6):695-704. 被引量:9
  • 3ZHUHUACHENG,YANGZONGXIN,CHENJIXIU.SOME RESULTS OF A NEHARI FAMILY[J].Chinese Annals of Mathematics,Series B,2005,26(1):57-66. 被引量:4
  • 4Ahlfors, L. & Weill, G., A uniqueness theorem for Beltrami equations [J], Proc. Amer.Math. Soc., 13(1962), 975-978.
  • 5Chuaqui, M., On a theorem of Nehari and quasidiscs [J], Ann. Acad. Sci. Fenn.,18(1993), 117-124.
  • 6Chuaqui, M. & Osgood, B., Finding complete conformal metrics to extend conformal mappings (preprint).
  • 7Chuaqui, M. & Osgood, B., An extension of theorem of Gehring and Pommerenke [J],Israel J. Math., 91(1995), 393 407.
  • 8Chuaqui, M. & Osgood, B., Sharp distortion theorems associated with the Schwarzian derivative [J], J. London Math. Soc., 48:2(1993), 289 298.
  • 9Chuaqui, M., Osgood, B. & Pommerenke, Ch., John domains, quasidiscs, and the Nehari class [J], J. Reine und Angew. Math., 471(1996), 77-114.
  • 10Gehring, F. W. & Pommerenke, Ch., On the Nehari univalence criterion and quasicircles[J], Comment. Math. Helv., 59(1984), 226-242.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部