摘要
为了研究超高斯脉冲在具有不同陡峭程度的超高斯型色散渐减光纤中的传输特性,采用了非线性薛定谔方程和分步傅里叶变换的方法,数值模拟了超高斯脉冲在超高斯型色散渐减光纤中的演化规律。在反常色散区考虑色散和非线性效应的情况下,对超高斯脉冲的阐述特性进行了时域和频域上的理论分析与实验验证。结果表明,陡峭程度m=4时,超高斯型色散渐减光纤的传输特性最好。此研究对超高斯型色散渐减光纤中脉冲的传输特性分析是有帮助的。
In order to study the propagation characteristics of super-Gaussian pulse in super-Gaussian dispersion decreasing fiber with different steepness,the nonlinear evolution of Gaussian pulse in the super-Gaussian dispersion-decreasing fiber was numerically simulated by using the nonlinear Schrodinger equation and the stepwise Fourier transform method.The theoretical analysis and experimental verification of the super-Gaussian pulse in the time domain and frequency domain were carried out with consideration of dispersion and nonlinear effect in the abnormal dispersion zone.The results show that,when the steepness m=4,the super-Gaussian dispersion-decreasing fiber has the best transmission characteristics,so it is concluded that the higher the steepness m is,the better the transmission characteristics of pulse will be.
作者
史圣达
张巧芬
吴黎明
SHI Shengda;ZHANG Qiaofen;WU Liming(Key Laboratory of Precision Microelectronic Manufacturing Technology, School of Mechanical and Electrical Engineering, Guangdong University of Technology, Guangzhou 510006, China)
出处
《激光技术》
CAS
CSCD
北大核心
2020年第3期388-392,共5页
Laser Technology
基金
国家自然科学基金资助项目(61705045)。
关键词
光纤光学
超高斯型色散渐减光纤
超高斯脉冲
非线性薛定谔方程
陡峭程度
反常色散区
fiber optics
super-Gaussian dispersion-decreasing fiber
super-Gaussian pulse
nonlinear Schrodinger equation
steepness
anomalous dispersion region