期刊文献+

分母为平方因子的二项式系数倒数级数 被引量:1

The Series of Reciprocal of Binomial Coefficients of Denominator Containing Square Factors
原文传递
导出
摘要 根据一个已知级数,利用反正弦积分与多对数的结果,用积分-裂项法给出分母为1个平方因子,平方因子与1个,2个,3个奇因子乘积的二项式系数倒数级数.利用反三角函数与反双曲函数关系给出分母为平方因子的交错二项式系数倒数级数.所给出二项式系数倒数级数的和式是函数形式.并给出分母含有平方因子的二项式系数倒数数值级数恒等式. Using one known series,using integral of Arcsin and polylogarithm,we can structure several new series of reciprocal of binominal coefficients by integral-splitting items.Their denominator factor has a square,and square factor and 1,2,3 product of each factor.Using relation of inverse Trigonometric and Hyperbolic function we get that alternating series of reciprocal of binominal coefficients of denominator Containing square factors.And some series of reciprocal of numbers values of binominal coefficients of denominator containing square factors are given.The method of split items offered in this paper is a new combinatorial analysis way and a elementary method to construct new series.
作者 张来萍 及万会 ZHANG Lai-ping;JI Wan-hui(Xinhua College,Ningxia University,Yinchuan 750021,China)
出处 《数学的实践与认识》 北大核心 2020年第5期205-219,共15页 Mathematics in Practice and Theory
基金 宁夏高校科研基金项目(NGY2017253)。
关键词 二项式系数 平方因子 多对数 积分-裂项 级数 Binomial coefficients reciprocal squarer factor polylogarithm integral-Split terms Series
  • 相关文献

参考文献5

二级参考文献21

  • 1Lehmer D H. Interesting series involving the central binomial coefficients[J]. Amer, Math. Monthly, 1985, 7: 449-457.
  • 2Sury B. Tianning Wang, and Feng-Zhaen Zhao,Some identities involving of. binomial coefficients[J].J. integer Sequences, 2004, 7(2): 2-12.
  • 3Solo A. general properties involving reciprocal of Binomial coefficients[J]. Journal of integral se- quences, 2006, 9(4): 1-13.
  • 4Amghibech S. On sum involving Binomial coefficient[J]. Journal of integer sequences, 2007, 7(2): 1-17.
  • 5Jin-Hua Yang and Feng-zhen Zhao,Sums involving the inverses of binomial coefficients[J]. Journal of integer Sequences, 2006, 9(6): 1-11.
  • 6Trif T. combinatorial sums and series involving inverses of binomial coefficients[J]. Fibonacci Quar- terly, 2000, 38(1): 79-84.
  • 7Borwein J M, and Girgensohn R. evaluation of binomial series[J]. Aequationens Math, 2005, 70: 25-36.
  • 8R.Sprugnoli,sums of reciprocal of the central binomial coefficients, integral[J], electronic Journal of combinatorial number theory, 2006, 6: 1-18.
  • 9Jolley L B W.Summation of Series[M].second revised edition Dover Publications Inc New York,1961:156-159.
  • 10Sofo A.Computation Techniques for the Summation of Series[M].Kluwer Academic Plenum Publishers,2003:123.

共引文献23

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部