期刊文献+

基于模型分解的小样本学习 被引量:1

Few-shot learning via model composition
原文传递
导出
摘要 机器学习依赖大量样本的统计信息进行模型的训练,从而能对未知样本进行精准的预测.搜集样本及标记需要耗费大量的资源,因而如何基于少量样本(few-shot learning)进行模型的训练至关重要.有效的模型先验(prior)能够降低模型训练对样本的需求.本文基于元学习(meta learning)框架,从相关的、类别不同的数据中学习模型先验,并将这种先验应用于新类别的少样本任务.与此同时,本文提出"模型组合先验"(MCP,model composition prior)方法,通过目标函数的最优条件对模型结构进行分解,并分别估计模型的各个组成部分,得到有效的分类器.这种分解方式具有较高的可解释性,能够指导在不同小样本任务中"共享"与"独立"的成分,从而指导元学习的具体实现.在人造数据中,本文方法能够恢复出小样本任务之间的关联性;在图像数据上,MCP方法能取得比当前主流方法更优异的效果. Although achieve inspiring performance in many real-world applications,machine learning methods require a huge amount of training examples to obtain an effective model.Considering the effort collecting labeled training data,the few-shot learning,i.e.,learning with budgeted training set,is necessary and useful.Model prior,e.g.,the feature embedding,initialization,and configuration,is the key to the few-shot learning.This study metalearns such prior from seen classes and apply the learned prior over few-shot task on unseen classes.Meanwhile,based on the first order optimal condition of the objective,the model composition prior(MCP)is stressed to decompose the model prior and estimate each component.The composition strategy improves the explainability,while guiding the shared and specific parts among those few-shot tasks.We verify the ability of our approach to recover task relationship over the synthetic dataset,and our MCP method achieves better results on two benchmark datasets(MiniImageNet and CUB).
作者 叶翰嘉 詹德川 Han-Jia YE;De-Chuan ZHAN(National Key Laboratory for Novel Software Technology,Nanjing University,Nanjing 210023,China)
出处 《中国科学:信息科学》 CSCD 北大核心 2020年第5期662-674,共13页 Scientia Sinica(Informationis)
基金 国家重点研发计划“大数据分析的基础理论和技术方法”(批准号:2018YFB1004300) 国家自然科学基金(批准号:61773198,61632004) 计算机软件新技术协同创新中心,南京大学优秀博士研究生创新能力提升计划项目资助。
关键词 小样本学习 元学习 模型先验 模型分解 few-shot learning meta-learning model prior model composition
  • 相关文献

参考文献1

二级参考文献10

  • 1Li N, Tsang I W, Zhou Z H. Efficient optimization of performance mea- sures by classifier adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1370-1382.
  • 2Pan S J, Yang Q. A survey of transfer learning. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359.
  • 3Sugiyama M, Kawanabe M. Machine Learning in Non-Stationary En- vironments: Introduction to Covariate Shift Adaptation. Cambridge, MA: MIT Press, 2012.
  • 4Da Q, Yu Y, Zhou Z H. Learning with augmented class by exploiting unlabeled data. In: Proceedings of the 28th AAAI Conference on Arti- ficial Intelligence. 2014, 1760-1766.
  • 5Mu X, Ting K M, Zhou Z H. Classification under streaming emerg- ing new classes: a solution using completely random trees. CORR abs/1605.09131, 2016.
  • 6Hou C, Zhou Z H. One-pass learning with incremental and decremental features. CORR abs/1605.09082, 2016.
  • 7Dietterich T G. Towards robust artificial intelligence. AAAI Presiden- tial Address at the 30th AAAI Conference on Artificial Intelligence. 2016.
  • 8Zhou Z H, Jiang Y, Chen S F. Extracting symbolic rules from trained neural network ensembles. AI Communications, 2003, 16(1): 3-15.
  • 9Zhou Z H, Jiang Y. NeC4.5: Neural ensemble based C4.5. IEEE Trans- actions on Knowledge and Data Engineering, 2004, 16(6): 770-773.
  • 10Zhou Z H. Ensemble Methods: Foundations and Algorithms. Boca Ra- ton, FL: CRC Press, 2012.

共引文献19

同被引文献21

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部