摘要
关于x^3±1=Dy^2(D>0)型不定方程的解法还没有一般性的结论;研究D=1379时不定方程x^3±1=Dy^2的可解性问题,利用同余理论、递归序列、平方剩余以及Pell方程解的性质证明了不定方程x^3+1=1379y^2仅有整数解(x,y)=(-1,0),不定方程x^3-1=1379y^2仅有整数解(x,y)=(1,0);所使用的代数方法可以推广到求解大系数的三次不定方程中去.
There is no general conclusion about the solution of x^3±1=Dy^2(D>0)type Diophantine equation.The solvability of x^3±1=Dy^2 for Diophantine equation when D=1379 is studied.By using congruence,recursive sequence,quadratic remainder and some properties of solutions of Pell equations,it is proved that the Diophantine equation x^3+1=1379 y^2 has only integer solutions(x,y)=(-1,0),and that the Diophantine equation x^3-1=1379 y^2 has only integer solutions(x,y)=(1,0).The algebraic method used can be extended to solve cubic Diophantine equations with large coefficients.
作者
曹瑞
罗明
CAO Rui;LUO Ming(School of Mathematical Science,Chongqing Normal University,Chongqing 401331,China)
出处
《重庆工商大学学报(自然科学版)》
2020年第4期118-122,共5页
Journal of Chongqing Technology and Business University:Natural Science Edition
关键词
不定方程
正整数解
递归数列
同余式
Diophantine equation
positive integer solution
recursive sequence
congruence