期刊文献+

基于长短期记忆网络的电网动态轨迹趋势预测方法 被引量:21

Trend Prediction Method of Power Network Dynamic Trajectory Based on Long Short Term Memory Neural Networks
下载PDF
导出
摘要 为满足大电网主动防御对算法速度和精度的要求,提出基于长短期记忆(long short term memory,LSTM)网络的电网动态轨迹趋势预测方法。首先,针对电压时序相轨迹的几何特征,提取节点状态的时序演进规律,快速辨识系统发电机运动的同趋性;其次,基于LSTM快速预测等值机系统的受扰轨迹;最后依据扩展等面积准则计算切机量,实现暂态功角稳定的紧急控制。IEEE 39系统算例验证了方法的有效性,该方法无需复杂计算、耗时短,具有较好的工程应用价值。 In order to meet the requirement of speed and precision for active defense of large power grid,a prediction method based on long short term memory for dynamic trajectory of power network was proposed in this paper.Firstly,aiming at the geometric characteristics of the track of the voltage sequential phasor,the time sequence evolution rule of the node state was extracted,and the convergence of the generator motion was identified quickly.Secondly,based on the long short term memory,the disturbed trajectory of the equivalent two-machine system was predicted rapidly.Finally,the emergency control of transient power angle stability was realized by calculating the cutting capacity according to the extended equal area criterion(EEAC).An example of IEEE 39 system shows the effectiveness of the proposed method.This method does not require complex computation and is time-consuming and has a good application value in engineering.
作者 杨少波 刘道伟 安军 李宗翰 杨红英 赵高尚 YANG Shaobo;LIU Daowei;AN Jun;LI Zonghan;YANG Hongying;ZHAO Gaoshang(School of Electrical Engineering,Northeast Dianli University,Jilin 132012,Jilin Province,China;China Electric Power Research Institute,Haidian District,Beijing 100192,China)
出处 《中国电机工程学报》 EI CSCD 北大核心 2020年第9期2854-2865,共12页 Proceedings of the CSEE
基金 国家自然科学基金面上项目(51877034)。
关键词 长短期记忆网络 人工智能 电压相轨迹 同趋性辨识 紧急控制 long-short term memory artificial intelligence voltage phase trajectory homotaxis identification emergency control
  • 相关文献

参考文献20

二级参考文献289

共引文献549

同被引文献285

引证文献21

二级引证文献178

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部