摘要
建立精准、无损的冬小麦叶绿素含量监测模型,为冬小麦施肥调控和产量评估提供科学依据。本研究以实测的冬小麦冠层光谱反射率和冠层SPAD值数据为基础,分析经变换后反射率与冠层SPAD值的相关关系,以此为基础构建了基于不同光谱变换形式下冬小麦全生育时段的冠层SPAD值监测模型。结果表明:以光谱变换后反射率与监测冠层SPAD值相关性最高为原则,筛选出的适宜光谱变换形式下的敏感波段,其中拔节-抽穗期为一阶微分(503 nm),抽穗-灌浆期为一阶微分(543 nm),灌浆-成熟期为对数的一阶微分(726 nm),全生育期为除以R930(724 nm);考虑各生育时段特点构建不同光谱变换形式下适宜的回归模型组合即模型组合1,考虑模型简单实用性构建单个光谱变换值的一元二次回归模型即模型2,模型1在各生育期及全生育期的决定系数R^2分别为0.836、0.855、0.917、0.890,且较同期模型2的决定系数R^2分别提高了24.4%、6.1%、57.8%、37.8%,表明采用各生育期不同光谱变换形式下适宜模型组合的监测效果优于单个光谱变换值的一元二次回归模型。
A precise and non-destructive monitoring model of chlorophyll content in winter wheat is established to provide scientific basis for the fertilization regulation and yield evaluation of winter wheat.Based on the measured spectral reflectance and SPAD value of winter wheat canopy,the correlation between the spectral reflectance and SPAD value of winter wheat canopy after transformation is analyzed.Based on this,a monitoring model of SPAD value of winter wheat canopy during the whole growth period under different spectral transformation forms is constructed.The results show that the sensitive bands in the form of spectral transformation are selected according to the principle of the highest correlation between reflectance after spectral transformation and SPAD value of monitoring canopy.Among them,jointing-heading stage is a first-order differential(503 nm),heading-filling stage is a first-order differential(543 nm),and filling-maturing stage is a first-order differential(726 nm).The whole growth period is divided by R930(724 nm).Considering the characteristics of each growth period,a suitable regression model combination under different spectral transformation forms is constructed,i.e.model combination 1.Considering the simplicity and practicability of the model,a one-dimensional quadratic regression model of single spectral transformation value,i.e.model 2,is constructed.The determinant coefficients R^2 of model 1 in each growth period and the whole growth period are 0.836,0.855,0.917 and 0.890,respectively.Compared with model 2 of the same period,the determinant coefficients R^2 increases by 24.4%,6.1%,57.8%and 37.8%respectively,which indicates that the monitoring effect of suitable model combination under different spectral transformation forms in different growth stages is better than that of single spectral transformation value quadratic regression model.
作者
林少喆
彭致功
张宝忠
魏征
张倩
韩娜娜
刘露
王春堂
冯哲
LIN Shao-zhe;PENG Zhi-gong;ZHANG Bao-zhong;WEI Zheng;ZHANG Qian;HAN Na-na;LIU Lu;WANG Chun-tang;FENG Zhe(College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an 271018, Shandong Province, China;The State key Laboratory of Water Cycle Simulation and Regulation in the Watershed of the Chinese Academy of Water Conservancy and Hydropower Sciences, Beijing 100038,China;QingDao Water Conservancy Survey Design Institute Co ltd, Qingdao 266700, China)
出处
《中国农村水利水电》
北大核心
2020年第3期33-38,共6页
China Rural Water and Hydropower
基金
国家重点研发计划课题(2018YFC0407703)
中国水利水电科学研究院基本科研业务费专项(ID0145B082017、ID0145B742017、ID0145B492017)
流域水循环模拟与调控国家重点实验室自主研究课题(2016TS06)
山东省重点研发计划项目(2018GNC110015)
山东省自然科学基金项目(ZR2017MEE001)。
关键词
冬小麦
光谱变换
冠层SPAD值
生育时段
模型组合
winter wheat
spectral transformation
canopy SPAD value
growth period
model combination