摘要
为探明甘蔗鞭黑粉菌不同致病力菌株在转录水平的差异,挖掘致病相关基因,采用Illumina测序技术对2个不同致病力菌株Ss16(强致病力)和Ss47(弱致病力)构建cDNA文库,进行转录组测序,通过质控后对其进行生物信息学分析。结果显示:共获得8.31G(Ss16)和9.88G(Ss47)的分析数据(clean reads),Ss16和Ss47相比较共获得显著(P<0.05)差异表达基因649个,其中上调基因299个,下调基因350个。差异性表达基因的GO注释及KEGG通路富集分析结果表明,KEGG通路多与物质的蛋白合成、运输和代谢相关,富集最显著的前几条通路分别为:淀粉和蔗糖代谢(starch and sucrose metabolism)、ABC转运蛋白(ABC transporters)、芳香族化合物的降解(degradation of aromatic compounds)、代谢途径(metabolic pathways)和嘌呤代谢(purine metabolism)。
Illumina sequencing technology was used to construct the cDNA library of two Sporisorium scitamineum strains Ss16(strong pathogenicity)and Ss47(weak pathogenicity),followed by transcriptome sequencing,and bioinformatics analysis after quality control in order to investigate the differences at transcriptional level between S.scitamineum strains with different pathogenicity and discover pathogenicity-related genes.The results showed that a total of 8.31G(Ss16)and 9.88G(Ss47)clean reads were obtained.There were 649 differentially expressed genes(DEGs)including 299 up-regulated genes and 350 down-regulated genes between Ss16 and Ss47.Results of GO annotation and KEGG pathway enrichment analyses showed that DEGs were significantly enriched in KEGG pathways involved in starch and sucrose metabolism,ABC transporters,degradation of aromatic compounds,metabolic pathways,purine metabolism.These pathways are mostly related to protein biosynthesis,transport and metabolism of substances.It will provide molecular basis for revealing the pathogenic mechanism of S.scitamineum.
作者
吴佳
李惠中
邓权清
陈健文
沈万宽
WU Jia;LI Huizhong;DENG Quanqing;CHEN Jianwen;SHEN Wankuan(College of Agronomy/Ministry of Agriculture and Rural Affairs,Scientific Observing and Experimental Station of Crop Cultivation in South China,South China Agricultural University,Guangzhou 510642,China)
出处
《华中农业大学学报》
CAS
CSCD
北大核心
2020年第3期54-59,共6页
Journal of Huazhong Agricultural University
基金
国家自然科学基金项目(31771861)
广东省甘蔗剑麻产业技术体系创新团队项目(2019KJ104-07)。
关键词
甘蔗
鞭黑粉菌
转录组
致病相关基因
差异表达基因
生物信息学分析
sugarcane
Sporisorium scitamineum
transcriptome
pathogenicity-related genes
differentially expressed genes(DEGs)
bioinformatics analysis