期刊文献+

分数阶广义混沌系统分析及有限时间同步

Analysis of Fractional-order Generalized Chaotic Systems and Finite Time Synchronization
下载PDF
导出
摘要 混沌是非线性动力系统中所特有的一种运动形式,将混沌系统抽象成数学模型并加以控制是探索混沌应用的主要形式,随着混沌系统研究的深入,分数阶系统逐渐从整数阶系统中脱颖而出,由此通过研究一类新的整数阶混沌系统,提出了相应的分数阶三维自治系统;通过系统的线性项判别,并根据分数阶Lyapunov稳定理论对于混沌系统中平衡点种类进行区分,发现该新分数阶系统产生的平衡点属于不稳定鞍点;对于该分数阶系统采用有限时间稳定理论,在驱动系统与响应系统中进行同步控制器的设计,通过数值仿真验证并绘制出有限时间同步关系曲线图验证了在短时间内实现混沌同步控制。 Chaos is a special form of motion in nonlinear dynamical system. It is the main form to explore the application of chaos in abstract chaotic system into mathematical model and to control it. With the deepening of chaotic system research,fractional order system gradually stands out from integer order system. By studying a new class of integer order chaotic systems,a fractional order 3 d autonomous system is proposed. According to Lyapunov stability theory,the equilibrium points in chaotic systems are distinguished by the linear terms of the system,and it is found that the equilibrium points generated by the new fractional-order system are unstable saddle points. For this fractional-order system,the finite-time stability theory is adopted to design the synchronization controller in the drive system and response system,and the finite-time synchronization relation graph is drawn through numerical simulation to verify the realization of chaotic synchronization control in a short time.
作者 周六圆 孙观 崔岩 何洪俊 卢晨晖 ZHOU Liu-yuan;SUN Guan;CUI Yan;HE Hong-jun;LU Chen hui(School of Mechanical Engineering,Shanghai University of Engineering and Science,Shanghai 201620,China)
出处 《重庆工商大学学报(自然科学版)》 2020年第3期60-65,共6页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 国家自然科学基金青年科学基金项目(11604205).
关键词 混沌系统 Lyapunov稳定理论 有限时间 同步控制 chaos systems Lyapunov stability theory finite time synchronization control
  • 相关文献

参考文献4

二级参考文献22

  • 1Lorenz E N. Deterministic nonperiodic flow[J].J Atmos Sci, 1963, 20: 130.
  • 2Mahmoud G M, Bountis T. The dynamics of systems of complex nonlinear oscillators: a review[J]. Int.J. Bifurcation chaos, 2004, 14(10: 3821.
  • 3Mahmoud G M, Al-Kashif M A, Farghaly A A, Chaotic and hyperchaotic attractors of a complex nonlinear system[J].J Phys A: Math Theor, 2008, 41(5): 055104.
  • 4Mahmoud G M, Mahmoud E E, Ahmed M E. On the hyperchaotic complex Lu system[n. Nonlinear Dyn, 2009, 58(4): 725.
  • 5Mahmoud G M, Ahmed M, Mahmoud E E. Analysis of hyperchaotic Lorenz complex system[J]' IntJ Mod Phys C, 2008, 19(10): 1477.
  • 6Mahmoud G M, Aly S A, AL-Kashif M A. Dynami?cal properties and chaos synchronization of a new chaotic complex system[J]. Nonlinear Dyn , 2008, 51(1), 171.
  • 7Li X F, Chu Y D, ZhangJ G, et al. Nonlinear dy?namics and circuit implementation for a new autono?mous chaotic system[J]. Chaos Solitions & Frac?tals, 2009, 41(5): 2360.
  • 8赵品栋,张晓丹.一类分数阶混沌系统的研究[J].物理学报,2008,57(5):2791-2798. 被引量:27
  • 9谢英慧,孙增圻.时滞Chen混沌系统的指数同步及在保密通信中的应用[J].控制理论与应用,2010,27(2):133-137. 被引量:16
  • 10王震,孙卫.分数阶Chen混沌系统同步及Multisim电路仿真[J].计算机工程与科学,2012,34(1):187-192. 被引量:25

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部