摘要
慢性萎缩性胃炎是一种常见的胃病,如果得不到及时治疗,有可能发展成胃癌。然而,胃镜检查在萎缩性胃炎检查中的敏感性仅为约42%,且活检受许多因素的影响。因此,使用卷积神经网络有助于提高诊断慢性萎缩性胃炎的准确性。首先采用INPAINT_TELEA算法对胃窦图像进行预处理,去除图像中的水印,对残差网络进行改进并嵌入Squeeze_and_Excitaion模块以筛查慢性萎缩性胃炎,改进后的网络(SR-CAGnet)通过建立短路机制以及采用特征重标定策略提高图像的分类效果。结果表明:与Alexnet和改进的ResNet网络进行对比,SR-CAGnet对慢性萎缩性胃炎的检出率为87.92%,算法识别效果良好。通过使用Apriori算法并分析,得到萎缩性胃炎与胃镜检查下其他症状的关系,以辅助医生的诊断。最后使用CAM热图验证模型的有效性。
Chronic atrophic gastritis is a common stomach disease,and it may develop into gastric cancer if without timely treatment.However,the sensitivity of gastroscopy in the examination of atrophic gastritis is only about 42%,and the biopsy is affected by many factors.Therefore,convolutional neural network is used to improve the diagnosis accuracy of chronic atrophic gastritis.INPAINT_TELEA algorithm is firstly used to preprocess the image of the gastric antrum for removing the watermarks in the image,and then residual network is improved and embed into Squeeze_and_Excitation module to realize the diagnosis of chronic atrophic gastritis.Finally,the improved network(SR-CAGnet)is applied to enhance the classification effect of images by establishing a short circuit mechanism and adopting a feature recalibration strategy.The results show that the detection rate of chronic atrophic gastritis by SR-CAGnet reaches 87.92%as compared with Alexnet and improved ResNet,which indicates the proposed algorithm has a good performance on recognition.Through the analysis by Apriori algorithm,the relationship between atrophic gastritis and other symptoms detected by gastroscopy is obtained,thus assisting doctor's diagnosis.Finally,the validity of the model is verified using CAM heat map.
作者
巩稼民
马豆豆
蒋杰伟
张雅琼
裴梦杰
GONG Jiamin;MA Doudou;JIANG Jiewei;ZHANG Yaqiong;PEI Mengjie(School of Electronic Engineering,Xi'an University of Posts and Telecommunications,Xi'an 710121,China;Department of Gastroenterology,Shanxi Provincial People's Hospital of Shanxi Medical University,Taiyuan 030012,China;School of Computer Science&Technology,Xi'an University of Posts and Telecommunications,Xi'an 710121,China)
出处
《中国医学物理学杂志》
CSCD
2020年第5期649-655,共7页
Chinese Journal of Medical Physics
基金
国家重点研发计划(2018YFC0116500)
中央高校基本科研业务费专项资金资助项目(JB181002)。