期刊文献+

一类时变时滞系统改进的稳定性准则 被引量:1

Improved Stability Criterion for a Class of Time-varying Delayed Systems
下载PDF
导出
摘要 研究一类时变时滞系统稳定性准则的改进问题。首先,基于李雅普诺夫稳定性理论,充分利用时滞信息,通过引入增广矩阵和改进的三重积分项来构造Lyapunov-Krasovskii(L-K)泛函;其次,应用Wirtinger积分不等式结合凸组合不等式来处理L-K泛函求导过程中产生的积分项,以线性矩阵不等式的形式得到了一个保守性较小和运算效率较高的稳定性准则;最后,通过一个通用的数例验证所得准则的有效性。 This paper investigates the stability criterion for a class of time-varying delay systems.Firstly,based on Lyapunov stability theory and the delay information,the Lyapunov-Krasovskii(L-K)functional is constructed by introducing an augmented matrix and triple integral.Secondly,the integral terms from the derivation of Lyapunov-Krasovskii functional are dealt with by Wirtinger integral inequality and convex combination inequality.Finally,stability criterion for time-varying delay systems with less conservatism and high computational efficiency are obtained in the form of LMIs.The effectiveness of the proposed method is verified by a well-known numerical example in prevailing literature.
作者 唐亮 姜偕富 尹宗明 刘丽丽 TANG Liang;JIANG Xiefu;YIN Zongming;LIU Lili(School of Automation,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China)
出处 《杭州电子科技大学学报(自然科学版)》 2020年第3期57-61,83,共6页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 国家自然科学基金资助项目(61673148)。
关键词 时变时滞系统 稳定性准则 线性矩阵不等式 L-K泛函 time-varying delay systems stability criterion linear matrix inequality L-K functional
  • 相关文献

参考文献2

二级参考文献21

  • 1何勇,吴敏.多时变时滞系统的鲁棒稳定及有界实引理的时滞相关条件[J].控制理论与应用,2004,21(5):735-741. 被引量:12
  • 2Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control[J]. IEEE Transaction on Systems, 1985, 15(1): 116-132.
  • 3Cao Y Y, Frank P M. Analysis and synthesis of nonlinear time delay systems via thzzy control approach[J]. IEEE Transactions on Fuzzy Systems, 2000, 8(2): 200-211.
  • 4Katayama H, Ichikawa A. H control for discrete time Takagi-Sugeno fuzzy systems[J]. International Journal of Systerms Science, 2002, 33(14): 1099-1107.
  • 5Tian E, Peng C. Delay-dependent stabilization analysis and synthesis of uncertain T-S fuzzy systems with time-varying delay[J]. Fuzzy Sets and Systems, 2006, 157(4): 544-559.
  • 6Jiang X F, Hart Q L. Robust Hcontrol for uncertain Takagi-Sugeno fuzzy systems with interval time-varying Delay[J]. IEEE Transactions on Fuzzy Systems, 2007(a), 15(2): 321-331.
  • 7James L, Gao H J. Stability analysis for continuous systems with two additive time-varying delay components[J]. Systems and Control Letters, 2007, 56(1): 16-24.
  • 8Xiao N, Jia Y M. New approaches on stability criteria for neural networks with two additive time-varying delay components[J]. Neurocomputing, 2013, 118(1): 150-156.
  • 9Idrissi S, El H T. Delay dependent robust stability of T-S fuzzy systems with additive time varying delays[J]. Applied Mathematical Sciences, 2012, 6(1): 1-12.
  • 10Rajeeb D, Ray G, Ghosh S. Stability analysis for continuous system with additive time-varying delays: A less conservative result[J]. Applied Mathematics and Computation, 2010, 265(10): 374 0-3745.

共引文献6

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部