期刊文献+

甲烷蒸汽重整制氢反应路径研究 被引量:3

Study on Reaction Pathways of Steam Methane Reforming for Hydrogen Production
下载PDF
导出
摘要 利用CFD建立了合理的重整管模型,在进口气体614℃、2 944 kPa,水碳比为2. 97的实验条件下进行甲烷蒸汽重整制氢的模拟计算,分析得到了由CH4生成H2的反应路径,研究了进口气体温度对反应路径的影响。研究结果表明:在甲烷蒸汽重整制氢反应中,CH4首先裂解为CH3,CH3合成C2H6,C2H6通过逐步的脱氢反应生成氢气;或者CH3转化为CH3OH,CH3OH发生一系列的脱氢反应生成氢气。从净反应速率来看,反应的重要中间产物CH3和CH3OH沿重整管轴线方向先生成后消耗,故其摩尔分数沿轴线方向先升高后降低。进口气体温度从600℃升高到1 000℃,氢气的产率从44. 91%提高至50. 21%。温度超过900℃时,基元反应R60和R112速率的显著减小使CH3脱氢及其转化为C2H6的过程受到阻碍,R100速率依旧增大使得更多的CH3转化为CH3OH;C2H6所参与的部分脱氢反应路径强度减小,更多的氢气通过CH4直接脱氢和CH3OH逐步脱氢生成。 A reasonable reforming tube model was established using CFD. The steam methane reforming process was numerically studied under experimental conditions of inlet gas of 614 ℃,2 944 k Pa and S/C = 2. 97( ratio of steam to carbon). The reaction pathways for H2 production were analyzed. The effects of temperature on the reaction pathways for H2 production were investigated. The results show that in the process of steam methane reforming,CH4 is first cracked into CH3. Then CH3 is synthesized into C2H6,and after that H2 is mainly generated from the successive dehydrogenation of C2H6;or CH3 is converted to CH3OH,and CH3OH is successively dehydrogenated to generate H2. From the perspective of the net reaction rate,the important intermediate species,CH3 and CH3OH,are generated first and then consumed along the axis of the tube,so their mole fractions increase first and then decrease along the tube. When the inlet gas temperature increases from 600 ℃ to 1 000 ℃,mole fraction of H2 at outlet increases from 44. 91% to50. 21%. When the temperature exceeds 900 ℃,the significant reduction in the elementary reaction rate of R60 and R112 retards the dehydrogenation of CH3 and its conversion to C2H6. The rate of R100 increases and more CH3 is converted to CH3OH. Pathways of C2H6 successive dehydrogenation are weakened,and more H2 is generated through direct dehydrogenation of CH4 and successive dehydrogenation of CH3OH.
作者 贺天智 蔡磊 管延文 刘文斌 HE Tianzhi;CAI Lei;GUAN Yanwen;LIU Wenbin
出处 《煤气与热力》 2020年第3期34-42,J0043,J0044,共11页 Gas & Heat
关键词 制氢 甲烷 蒸汽重整 基元反应 反应路径 脱氢反应 hydrogen production methane steam reforming elementary reaction reaction pathways dehydrogenation
  • 相关文献

参考文献5

二级参考文献26

  • 1贾林,邵震宇.燃料电池的应用与发展[J].煤气与热力,2005,25(4):73-76. 被引量:17
  • 2李艳,李帆,管延文.天然气制取燃料电池用氢技术的探讨[J].煤气与热力,2006,26(1):29-34. 被引量:8
  • 3Sun Y F,Sui Z J,Zhou J H,et al.Catalytic decomposition of methane over supported Ni catalysts with different particle sizes[J].Asia-Pacific Journal of Chemical Engineering,2009,4(5):814-820.
  • 4Bengaard H S,Nφrskov J K,Sehested J,et al.Steam reforming and graphite formation on Ni catalysts[J].Journal of Cartalysis,2002,209(2):365-384.
  • 5Zhu Y A,Chen D,Zhou X G,et al.DFT studies of dry reforming of methane on Ni catalyst[J] Catalysis Today,2009,148(3-4):260-267.
  • 6Garcia-Dieguez M,Pieta I S,Herrera M C,et al.Nanostructured Pt-and Ni-based catalysts for CO2-reforming of methane[J].Journal of Catalysis,2010,270(1):136-145.
  • 7Takenaka S,Shigeta Y,Tanabe E,et al.Methane decomposition into hydrogen and carbon nanofibers over supported Pd-Ni catalysts:Characterization of the catalysts during the reaction[J].Journal of Physical Chemistry B,2004,108(23):7656-7664.
  • 8Kresse G,Furthmüller J.Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J].Computational Materials Science,1996,6(1):15-50.
  • 9Kresss G,Furthmüller J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J].Physical Review B,1996,54(16):11169-11186.
  • 10Blǒchl P E.Projector augmented-wave method[J].Physical Review B,1994,50(24):17953-17978.

共引文献76

同被引文献45

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部