期刊文献+

结合批归一化的多层感知机糖尿病预测诊断模型 被引量:5

Multi-Layer Perceptron Diabetes Prediction Model Combined with Batch Normalization
下载PDF
导出
摘要 糖尿病的早期发现,对成功控制、预防并发症,降低患病率具有重要意义.现有基于机器学习建立的糖尿病诊断模型,由于泛化能力不足而导致精度较低.为此,本文提出结合批归一化的多层感知机模型,保证模型中数据分布的一致性.基于PIMA数据集进行训练评估,实验结果表明该模型用于糖尿病早期识别泛化能力好、收敛速度快且有较高的准确率. The early detection of diabetes is of great significance for successful control of diabetes,prevention of complications,and reduction of prevalence.Existing diabetes diagnosis models based on machine learning have weak precision due to insufficient generalization ability.Therefore,this study proposes a multi-layer perceptron model combined with batch normalization to ensure the consistency of data distribution in the model.The proposed model is based on the PIMA training set for training evaluation.The experimental results show that the model has sound generalization ability in early recognition of diabetes,fast convergence,and high accuracy.
作者 胡清礼 胡建强 余小燕 HU Qing-Li;HU Jian-Qiang;YU Xiao-Yan(School of Computer and Information Engineering,Xiamen University of Technology,Xiamen 361024,China;School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《计算机系统应用》 2020年第5期182-188,共7页 Computer Systems & Applications
基金 福建省自然科学基金(2019J01856) 赛尔网络下一代互联网创新项目(NGII20160708)。
关键词 糖尿病 机器学习 批归一化 泛化能力 diabetes machine learning batch normalization generalization ability
  • 相关文献

参考文献5

二级参考文献34

  • 1钱玲,施侣元,程茂金.人工神经网络应用于糖尿病并发症的影响因素研究[J].现代预防医学,2005,32(12):1625-1628. 被引量:5
  • 2叶世伟 史忠植译.神经网络原理[M].北京:机械工业出版社,2004..
  • 3HAYKINS.神经网络与机器学习:英文版[M].3版.北京:机械工业出版社,2009.
  • 4GE S S, HANG C C, LEE T H, et al. Stable adaptive neural network control [ M ]. Berlin: Springer Publishing Company, Incorporated, 2010.
  • 5I-IORNIK K, STINCHCOMBE M, WHITE H. Muhilayer feedforward networks are universal approximators [ J ]. Neural Networks, 1989, 2(5) : 359-366.
  • 6HORNIK K. Approximation capabilities of multilayer feedforward networks [ J ]. Neural Networks, 1991,4 (2) : 251-257.
  • 7HORNIK K. Some new results on neural network approximation [ J ]. Neural Networks, 1993, 6 ( 8 ) : 1069- 1072.
  • 8HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: a new learning scheme of feedforward neural networks [ C ] // IEEE International Joint Conference on Neural Networks. Budapest: IEEE, 2004: 985-990.
  • 9HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications [ J]. Neurocomputing, 2006, 70(1): 489-501.
  • 10LESHNO M, LIN V Y, PINKUS A, et al. Muhilayer feedforward networks with a nonpolynomial activation function can approximate any function [ J ]. Neural Networks, 1993, 6(6) : 861-867.

共引文献39

同被引文献44

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部