期刊文献+

液化空气储能与发电一体化系统的性能分析 被引量:6

PERFORMANCE ANALYSIS ON AN INTEGRATED SYSTEM OF LIQUEFIED AIR ENERGY STORAGE AND ELECTRICITY PRODUCTION
下载PDF
导出
摘要 运用热力学理论建立液化空气储能阶段和释能发电阶段的数学模型,采用循环效率和液化率作为评价指标探讨压缩机组出口压力p4、低温泵出口压力、换热器效能、空气节流前温度和空气节流前压力对液化空气储能与发电一体化系统性能的影响规律。结果表明:提高低温泵出口压力与换热器效能,能显著增大系统循环效率;提高压缩机组出口压力p4,压缩机比耗功与膨胀机比输出功均增大,而系统循环效率有所降低;空气节流前压力越大、温度越低,节流后的液化率越大,循环效率越高。理论分析模型和研究结果可为液化空气储能与发电一体化系统的发展提供参考。 The mathematical model including the stages of energy storage and energy release is established by using the thermodynamic theory.The effects of compressor outlet pressure,cryogenic pump outlet pressure,heat exchanger efficiency,temperature and pressure before air throttling on the performance of integrated system of liquefied air energy storage and electricity production were studied by using cycle efficiency and liquefaction rate as evaluation indexes.The results show that increasing the cryogenic pump outlet pressure and heat exchanger efficiency can significantly increase the cycle efficiency of the system;improve the compressor outlet pressure,compression work and turbine power were increased,and the cycle efficiency decreased;the greater air pressure and the lower air temperature before throttling,the greater liquefaction rate after throttling,and the higher cycle efficiency.The theoretical analysis model and research results can provide a reference for the development of the integrated system of liquefied air energy storage and electricity production.
作者 谢英柏 薛晓东 Xie Yingbai;Xue Xiaodong(Department of Power Engineering,North China Electric Power University,Baoding 071003,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2020年第4期333-339,共7页 Acta Energiae Solaris Sinica
基金 河北省自然科学基金(E2014502085)。
关键词 液化空气 储能 循环效率 液化率 性能分析 liquid air energy storage cycle efficiency liquefaction rate performance analysis
  • 相关文献

参考文献2

二级参考文献30

  • 1吴瑜之.太阳能光伏发电及其发展[J].江西科技学院学报,2007,4(3):27-32. 被引量:5
  • 2王春明,周强,王金全,朱瑞德.风-光-柴互补供电系统[J].解放军理工大学学报(自然科学版),2005,6(5):474-478. 被引量:16
  • 3Global Wind Energy Council. Global Wind 2009 Report [EB/OL]. [2010-4-28]. http://www.gwec.net/index.php?id =167.
  • 4Korpaas M, Holen A T, Hildrum R. Operation and Sizing of Energy Storage for Wind Power Plants in a Market System [J]. Electrical Power and Energy Systems, 2003, 25:599-606.
  • 5Greenblatt J B, Succax S, Denkenberger D C, et al. Baseload Wind Energy: Modelling the Competition Between Gas Turbines and Compressed Air Energy Storage for Supplemental Generation [J]. Energy Policy, 2007, 35: 1474-1492.
  • 6Ridge Energy Storage & Grid Services. The Economic Impact of CAES on Wind in TX, OK, and NM, Final Report [R]. 2005.
  • 7CHEN Haisheng, DING Yulong, Toby P, et al. A Method of Storing Energy and a Cryogenic Energy Storage System, WO/2007/096656 [P/OL]. 2007-08-30.
  • 8杜祥琬.中国可再生能源发展战略研究丛书[M].综合卷.北京:中国电力出版社,2008:11-32.
  • 9McDowall J. Integrating energy storage with wind power in weak electricity grids[J]. Journal of Power Sources, 2006, 162(2).- 959-964.
  • 10Lurid P, Paatero J. Energy storage option for improving wind power quality[C]//Nordic Wind Power Conference, Espoo, Finland, 2006.

共引文献107

同被引文献81

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部