期刊文献+

基于随机森林的点蚀电位预测 被引量:2

Prediction for pitting potential based on random forest algorithm
下载PDF
导出
摘要 点蚀是不锈钢点焊接头最常见的失效形式之一。点蚀电位作为衡量点蚀行为的特征量,与焊接电流、焊接时间、电极压力等参数有着复杂的非线性关系。针对文献中不锈钢接头点蚀行为数据,建立随机森林模型,优化的决策树数目为1 000,通过"五折交叉验证"确定节点备选变量个数为2。预测结果表明:除29号样本预测相对误差较高外(-14.81%),剩余样本的预测结果均优于神经网络和支持向量机,相对误差的绝对值在10%以下。 Pitting is the popular failure mode of spot welding of stainless steel. The behavior of pitting could be evaluated through the eigenvalue named pitting potential,which has complicated nonlinear relations with the parameters of welding current,welding time and electrode force. The random forest is built through the specified data of the pitting behavior of stainless steel in the literature. Optimal number of decision trees are 1 000. The number of alternative variables in node is 2 by means of "five-fold cross validation". Then the parameter combination is utilized to predict the testing dataset. The results indicates that excepting a slightly higher predicted relative error of twenty-ninth sample(-14.81%),absolute value of relative error between the predicted result and the actual value of remaining samples are less than 10%,which is better than Neural Networks and support vector machine.
作者 邢易 李树枝 XING Yi;LI Shuzhi(CRRC Qingdao Sifang Co.,Ltd.,Qingdao 266111,China)
出处 《电焊机》 2020年第5期45-49,I0007,共6页 Electric Welding Machine
关键词 点蚀电位 随机森林 交叉验证 非线性 pitting potential random forest cross validation nonlinear
  • 相关文献

参考文献4

二级参考文献67

  • 1牛智有,韩鲁佳,苏晓鸥,杨振海.鱼粉品质的近红外反射光谱快速检测方法[J].农业机械学报,2005,36(5):68-71. 被引量:11
  • 2TomMMitchell.机器学习[M].北京:机械工业出版社,2003..
  • 3T Joachims. Text categorization with support vector machines:learning with many relevant features[A]. In: The 10th European Conference on Machine Learning[C]. New York: Springer, 1998. 137-142.
  • 4E Wiener. A neural network approach to topic spotting[A].The 4th Annual Symposium on Document Analysis and Information Retrieval[C]. Las Vegas: ACM Press,1995. 317-332.
  • 5Quanlan J R. C4.5: Programs for machine learning[M]. San Francisco: Morgan Kaufmann, 1993.
  • 6Breiman L. Random forests[J]. Machine Learning, 2001,45(1):5-32.
  • 7Breiman L. Manual on setting up, using, and understanding random forests v4.0 [EB/OL]. http://oz. Berkeley. edu/users/breiman/Using-random-forests-V4.0. pdf.
  • 8Remlinger K. Introduction and application of random forest on high though put screening data from drug discovery[EB/OL].http://www4.ncsu. edu/ksremlin.
  • 9Duda R Hart PE,Stock DG.模式分类(第二版)[M].李宏东,姚天翔泽.北京:机械工业出版社,2003.
  • 10Marques J Pdesa.模式识别—原理、方法及应用[M].吴逸飞译.北京:清华大学出版社,2002.

共引文献435

同被引文献19

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部