期刊文献+

基于大数据的台区行业聚合分类方法及分类特征分析 被引量:4

Analysis ofthe substation area industry clustering methods and classification characteristics based on the big data
下载PDF
导出
摘要 在研究台区近中期负荷预测方法的过程中,遇到了如何利用大数据识别台区进行行业分类的问题。经过研究,将这个问题分为台区行业分类方法和行业负荷特征两方面。台区行业分类确定了以用电类别作为一级分类,以及运用数据挖掘中的k-means算法对台区典型日年(最大)负荷曲线进行聚类的二级分类共同组成的分类方法;行业负荷特征研究在台区行业分类的基础上,分析行业负荷特征,包括典型日负荷特征和年负荷特征。并以此方法在深圳大数据平台对深圳市台区进行行业分类和分类特征分析。行业分类中将公专变台区一级分类后,对居民生活台区进行聚类分析,分别形成以居民负荷和学校负荷为主的两类。行业负荷特征分析中以学校台区为例,以学生是否住宿可以区分出走读类学校和住宿类学校。结果表明,此方法效果良好。 In the process of studying the load forecasting method in the near and medium term of the substation area,the problem of how to use big data to identify the station area for industry classification is encountered. After research,this problem is divided into the substation area industry classification method and industry load characteristics. The industry classification of the substation area determines a classification method which is composed of the first level classification of the power consumption category and the second level classification of the typical daily( maximum) load curve clustering of the substation area by using the k-means algorithm in data mining,and the industry load characteristic study analyzes the industry load characteristics on the basis of the industry classification of the substation area. Which includes typical daily load characteristics and annual load characteristics. In this way,the industry classification and classification feature analysis for the Shenzhen substation area are carried out in Shenzhen big data platform. In the industry classification,after the first level classification of public and private substation areas,cluster analysis is carried out for residential living areas,forming two types of residential load and school load respectively. In the analysis of industry load characteristics,taking the school substation area as an example,and whether students live or not can be divided into day schools and residential schools. The results show that this method works well.
作者 李健 林韶生 陈芳 杜佩仁 LI Jian;LIN Shaosheng;CHEN Fang;DU Peiren(Shenzhen Power Supply Bureau Co.,Ltd.,Shenzhen 518001Guangdong,China;Hangzhou Hongsheng Electric Power Design Co.,Ltd.,Hangzhou 311121Guangdong,China;Zhejiang University,Hangzhou 310027Guangdong,China)
出处 《电力大数据》 2020年第3期1-9,共9页 Power Systems and Big Data
关键词 负荷特征 聚类算法 行业分类 台区 负荷曲线 load characteristics clustering algorithm industry classification substation area load curve
  • 相关文献

参考文献14

二级参考文献183

共引文献992

同被引文献44

引证文献4

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部