期刊文献+

基于卷积神经网络与跳跃连接的网络入侵检测系统 被引量:2

Network Intrusion Detection System Based on Convolutional Neural Network and Skip Connections
下载PDF
导出
摘要 网络入侵检测系统(NIDS)在保护计算机网络中扮演着至关重要的角色。现有的方法不能持续性地检测新型攻击行为。此外,手工设计特征提取是繁琐的并且无法选择出非常适合的特征进行网络入侵检测。为了解决上述挑战,提出一种新颖的基于卷积神经网络的入侵检测模型。该方法能自动化地提取复杂高维的特征,并且引入跳跃链接克服神经网络训练的过拟合问题,从而实现高准确率。实验显示,提出的方法在KDD99数据集下取得98.33%的准确率,优于基于传统的机器学习方法。 Network Intrusion Detection System(NIDS)plays a vital role in protecting computer networks.Existing methods cannot continuously detect new types of attacks.In addition,manually designing feature extraction is tedious and cannot select very suitable features for network intru⁃sion detection.In order to solve the above challenges,a novel intrusion detection model based on convolutional neural networks is pro⁃posed.This method can automatically extract complex high-dimensional features,and introduce jump links to overcome the over-fitting problem of neural network training,thereby achieving high accuracy.Experiments show that the proposed method achieves an accuracy of 98.33%on the KDD99 data set,which is superior to traditional machine learning methods.
作者 孙旭日 程辉 彭博 SUN Xu-ri;CHENG Hui;PENG Bo(Qingdao Power Supply Company,State Grid Shandong Power Company,Qingdao 266002)
出处 《现代计算机》 2020年第13期44-50,共7页 Modern Computer
关键词 网络入侵检测系统 神经网络 跳跃连接 Network Intrusion Detection System Neural Networks Skip Connections
  • 相关文献

参考文献1

二级参考文献6

  • 1[1]Forrest S, Perrelason AS, Allen L, Cherukur R. Self_Nonself discrimination in a computer. In: Rushby J, Meadows C, eds. Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1994. 202~212.
  • 2[2]Ghosh AK, Michael C, Schatz M. A real-time intrusion detection system based on learning program behavior. In: Debar H, Wu SF, eds. Recent Advances in Intrusion Detection (RAID 2000). Toulouse: Spinger-Verlag, 2000. 93~109.
  • 3[3]Lee W, Stolfo SJ. A data mining framework for building intrusion detection model. In: Gong L, Reiter MK, eds. Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1999. 120~132.
  • 4[4]Vapnik VN. The Nature of Statistical Learning Theory. New York: Spring-Verlag, 1995.
  • 5[5]Lee W, Dong X. Information-Theoretic measures for anomaly detection. In: Needham R, Abadi M, eds. Proceedings of the 2001 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 2001. 130~143.
  • 6[6]Warrender C, Forresr S, Pearlmutter B. Detecting intrusions using system calls: Alternative data models. In: Gong L, Reiter MK, eds. Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1999. 133~145.

共引文献134

同被引文献12

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部