期刊文献+

基于多任务分类的吸烟行为检测 被引量:12

Smoking Detection Algorithm Based on Multitask Classification
下载PDF
导出
摘要 为了及时检测吸烟行为,准确做出状态判断,提出了一种基于多任务分类的吸烟行为检测算法。该算法融合多任务卷积神经网络、级联回归和残差网络,通过多任务卷积神经网络算法和基于梯度提高学习的回归树方法(RET级联回归)快速定位嘴部感兴趣区域(ROI);在此基础上,采用残差网络对ROI内目标进行检测和状态识别。实验结果表明,该算法可以准确检测到吸烟行为的发生并做出状态判断,准确率可以达到87. 5%。 In order to detect the smoking behavior in time and accurately judge the state. A smoking behavior detection algorithm based multi-task classification was proposed. The algorithm integrates multi-task convolution neural network,ensemble of regression trees cascade regression and depth residual network,quickly and accurately locates the region of interest through multi-task convolutional neural network algorithm and ERT cascade regression. Based on this,detect targets in the region of interest and identify status using deep residual network. The experimental results showed that the algorithm can accurately detect the occurrence of smoking behavior and make state judgments,the accuracy rate can reach 87. 5%.
作者 程淑红 马晓菲 张仕军 张丽 CHENG Shu-hong;MA Xiao-fei;ZHANG Shi-jun;ZHANG Li(Institute of Electrical Engineering,Yanshan University,Qinhuangdao,Hebei 066004,China;Chinwangtao Technician College,Qinhuangdao,Hebei 066004,China)
出处 《计量学报》 CSCD 北大核心 2020年第5期538-543,共6页 Acta Metrologica Sinica
基金 国家自然科学基金(61601400) 河北省博士后基金(B2016003027) 秦皇岛市科学技术研究与发展计划(201701B009)。
关键词 计量学 吸烟行为检测 多任务分类 卷积神经网络 级联回归 残差网络 感兴趣区域 人脸识别 metrology smoking detection multitasking classification convolution neural network cascade regression residual network region of interest face recognition
  • 相关文献

参考文献7

二级参考文献114

  • 1Nakamasa Inoue, Koichi Shinoda. Q-Gaussian mixture models for image and video semantic indexing [J]. Journal of Visual Communication and Image Representation, 2013, 24 (8):1450-1457.
  • 2Yu C. Met Z, Zhang X. A real-time video fire flame and smoke detection algorithm [J]. Procedia Engineering. 2013, 62: 891-898.
  • 3Li W, Fu B, Xiao I., et al. A video smoke detection algo- rithm based on wavelet energy and optical flow eigen-values [J]. Journal of Software, 2013, 8 (1): 63-70.
  • 4Zhan X. Ma B. Gaussian mixture model on tensor field for vi- sual tracking [J]. Signal Processing Letters, 2012. 19 (11): 733-736.
  • 5Xue K, Liu Y, Gbolabo Ogunmakin. et al. Panoramic Gau ssian mixture model and large-scale range background substrac lion method for PTZ camera-based surveillance systems [J]. Machine Vision Applications. 2013, 24 (3): 477-492.
  • 6Ivanov VA. Interpolation algorithms in caleulating the frame- to-frame difference for detecting moving point objects [J]. Op- toelectronics, Instrumentation and Data Processing, 2007, 43 (3): 246-251.
  • 7Kintu Palel. Key frame extraction based on block based histo- gram difference and edge matching rate [J]. International Jour- nal of Scientific Engineering and Technology, 2012, 1: 23-30.
  • 8COOTES T F, TAYLOR C J, COOPER 13 14, et al. Active Shape Models-Their Training and Application. Computer Vision and Image Understanding, 1995, 61 ( 1 ) : 38-59.
  • 9COOTES T F, EDWARDS G J, TAYLOR C J. Active Appearance Models. IEEE Trans on Pattern Analysis and Machine Intelligence, 2001, 23(6) : 681-685.
  • 10SAUER P, COOTES T, TAYLOR C. Accurate Regression Proce- dures for Active Appearance Models [ EB/OL~. [ 2014-07-28 ]. http ://www. bmva. org/bmvc/2011 / proceedings/paper30/paper30. pdf.

共引文献588

同被引文献72

引证文献12

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部