期刊文献+

基于暗通道先验与YOLO的水下河蟹识别研究 被引量:3

Recognition of Underwater Crab Based on Dark Channel Prior and YOLO
下载PDF
导出
摘要 为解决全自动均匀投饵作业船在河蟹养殖过程中投饵不精准问题,引入水下摄像设备采集图像,但采集的图像存在对比度低、模糊和图像退化等问题。为此,采用暗通道先验提高图像对比度。利用YOLO卷积神经网络技术快速准确地识别出低照度环境下的河蟹,识别准确率达到98%,平均耗时50ms。获得河蟹生长、分布信息后测算出河蟹养殖密度,为全自动均匀投饵作业船精准投饲提供数据支持。 In order to solve the problem of inaccurate baiting of fully automatic uniform baiting boat in crab culture,this paper introduc⁃es underwater camera equipment to collect images.Due to the problems of low contrast,blurring and degradation in underwater crab pond image,this paper uses dark channel prior to improve image contrast,and YOLO convolution neural network technology to identi⁃fy crabs in low illumination environment quickly and accurately.The recognition accuracy rate reaches 98%,and the average time con⁃sumes 50 ms.This method can achieve fast and accurate identification of river crabs in complex underwater crab ponds,obtain the growth and distribution information of river crabs and estimate the culture density of river crabs,which lays the foundation for accurate feeding of fully automatic uniform baiting boats.
作者 贺帆 赵德安 HE Fan;ZHAO De-an(College of Electrical Information Engineering,Jiangsu university,Zhenjiang 212000,China)
出处 《软件导刊》 2020年第5期29-32,共4页 Software Guide
基金 江苏省重点研发(现代农业)计划项目(BE2017331) 江苏省自然科学青年基金项目(BK20170536) 江苏省海洋与渔业科技创新与推广项目(Y2017-36) 常州市现代农业科技项目(CE20192006)。
关键词 图像退化 暗通道先验 河蟹识别 卷积神经网络 YOLO image degradation dark channel prior crab identification convolutional neural network YOLO
  • 相关文献

参考文献4

二级参考文献51

  • 1Tail R T. Visibility in bad weather from a single image. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8.
  • 2Fattal R. Single image dehazing. ACM Transactions on Graphics, 2008, 27(3): Article No. 72.
  • 3He K M, Sun J, Tang X O. Single image haze removal us- ing dark channel prior. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami. USA: IEEE, 2009. 1956-1963.
  • 4Tarel J P, Hautiere N. Fast visibility restoration from a sin- gle color or gray level image. In: Proceedings of the 12th IEEE International Conference oil Computer Vision. Kyoto, USA: IEEE. 2009. 2201-2208.
  • 5Namer E, Schectmer Y Y. Advanced visibility improvement based on polarization filtered images. In: Proceedings of the 2005 Polarization Science arid Remote Sensing. San Diego, USA: SPIE, 2005. 36-45.
  • 6Cardei V C, Funt B, Barnard K. White point estimation for uncalibrated images. In: Proceedings of the 7th IS and T/SID Color Imaging Conference: Color Science, Systems and Applications. Scottsdale, 1999. 97-100.
  • 7Burt P J, Kolczynski IR J. Enhanced image capture through fllsion. In: Proceedings of the 4th Iuternational Confe, rence on Computer Vision. Berlin, USA: IEEE, 1993. 173-182.
  • 8Paris M, Fredo D. A fast approximation of the bilateral fil- ter using a signal processing approach. Ⅲ: Proeeedings of the 9th European Conference on Computer Vision. Graz, Austria: Springer, 2006. 568-580.
  • 9Drago F, Myszkowski K, Annen T, Chiba N. Adaptive log- arithmic mapping for displaying high contrast sce,ms. Com- puter Graphics Forum, 2003, 22(3): 419-426.
  • 10Hautiere N, TareI J P, Aubert D, Dumont E. Blind con- trast enhancement assessment by gradient ratioing at visible edges. Image Analysis and Stereologsz, 2008, 27(2): 87-95.

共引文献248

同被引文献21

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部