期刊文献+

基于改进SSD网络的目标检测方法 被引量:1

Target Detection Methods Based on Improved SSD Network
下载PDF
导出
摘要 传统目标检测方法存在准确率低、可靠性差、效率低等问题,无法满足对大量图片准确、高效处理的需求。对SSD网络结构进行改进,删除原网络最后两个预测层,对保留各预测层的默认框个数和宽高比进行优化,同时对保留的最后一个预测层的网络参数进行改进。改进后的SSD网络减少了网络参数和计算量,对存在遮挡、目标较小等情况的图片数据具有更好的检测精度和检测效果,同时模型检测的mAP提高了约5.1%。改进后的网络模型解决了传统方法的不足,可以实时、准确、高效地对大量图片数据进行目标检测处理。 Traditional target detection methods are confronted with some problems,such as low accuracy,poor reliability and low effi⁃ciency,which make the methods fail to meet the needs of accurate and efficient processing of large numbers of pictures.This paper im⁃proves the structure of SSD network,deletes the last two prediction layers of the original network,optimizes the number of default frames and the aspect ratio of each prediction layer,and improves the network parameters of the last prediction layer.The improved SSD network reduces the network parameters and computational load,and has better detection accuracy and detection effect for images with occlusion and small target.Meanwhile,the mAP of model detection is increased by about 5.1%.The improved network model solves the shortcomings of traditional methods and can detect and process large number s of image data accurately and efficiently in real time.
作者 周德良 ZHOU De-liang(Beijing Zhongdianyida Technology Co.,Ltd.,Beijing 100190,China)
出处 《软件导刊》 2020年第5期52-55,共4页 Software Guide
关键词 SSD网络 目标检测 预测层 默认候选框 损失函数 SSD network target detection prediction layer default candidate box loss function
  • 相关文献

参考文献4

二级参考文献13

共引文献134

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部