期刊文献+

模糊多层级联盟结构合作对策Shapley值及其性质 被引量:3

Solving method and properties of the Shapley values of cooperative games with fuzzy multi-level coalition structures
下载PDF
导出
摘要 针对模糊合作对策中局中人可能形成多层级联盟结构的情况,利用Choquet积分定义模糊多层级联盟结构,进而提出Shapley值解概念及其解法.研究此类对策Shapley值满足整体有效性、可加性、联盟内对称性和哑元性等性质,并进一步证明其唯一性.最后,通过算例比较分析模糊多层级联盟结构合作对策Shapley值和Banzhaf值的异同特性.该Shapley值模糊拓展了多层级合作对策Shapley值,是经典Shapley值的一般表示形式. Considering multi-level coalition structures appearing in the fuzzy cooperative games,using the Choquet method,the fuzzy multi-level coalition structures are defined in this paper.And hereby the concept of Shapley values and solving method are proposed.We study the properties of Shapley value satisfying effectiveness,additivity,symmetry within the alliance and dumbness,and further prove its uniqueness.Finally,the similarities and differences between the Sharpley values and Banzhaf values of cooperative game with fuzzy multi-level coalition structure are compared and analyzed by an example.The Shapley values are extended to the fuzzy multi-level coaltion sturcture cooperative games,and they are the genaralization formal of the classsical Shapley values.
作者 杨靛青 李院红 俞裕兰 YANG Dianqing;LI Yuanhong;YU Yulan(College of Economics and Management,Fuzhou University,Fuzhou,Fujian 350108,China;Department of International Trade,Fujian Business University,Fuzhou,Fujian 350012,China)
出处 《福州大学学报(自然科学版)》 CAS 北大核心 2020年第3期289-295,共7页 Journal of Fuzhou University(Natural Science Edition)
基金 国家自然科学基金资助项目(71572040) 福建省社会科学规划项目(FJ2018B076,FJ2019B139) 博士后科学基金资助项目(2017M612118) 福建省自然科学基金面上资助项目(2018J01810)。
关键词 多层级联盟结构 SHAPLEY值 模糊合作对策 CHOQUET积分 multi-level coalition structures Shapley value fuzzy cooperative game Choquet integral
  • 相关文献

参考文献4

二级参考文献21

  • 1谭春桥.基于Choquet延拓具有区间模糊联盟n人对策的Shapley值[J].系统工程学报,2010,25(4):451-458. 被引量:15
  • 2Shapley L. A value for n-person games//Kuhn A, Tucker A. Contributions to the Theory of Games. Princeton: Princeton UniversityPress, 1953: 307-317.
  • 3Owen G. Characterization of the Banzhaf-coleman index. SIAM Journal on Applied Mathematics, 1978,35(2): 315-327.
  • 4Tijs S. Bounds for the core and the r-vaiue//Moeschlin O, Pallaschke D. Game Theory and Mathematical Economics. North-Holland:Amsterdam, 1981: 123-132.
  • 5Driessen T. Cooperation Games, Solutions and Applications. Netherlands: Kluwer Academic Publisher, 1988.
  • 6Bilbao J, Jim6nez-losada A, Lebr6n E, et al. The r-value for games on matroids. Top, 2002, 10(1): 67-81.
  • 7Casas-mendez B, Garcia-jurado I,Nouweland A, et al. An extension of the r-value to games with coalition structures. EuropeanJournal of Operational Research, 2003, 148(3): 494-513.
  • 8Tsurumi M,Tanino T, Inuiguchi M. A Shapley function on a class of cooperative fuzzy games. European Journal of OperationalResearch, 2001,129(3): 596-618.
  • 9Li S J, Zhang Q. A reduced expression of the Shapley function for fuzzy game. European Journal of Operational Research, 2009,196(1): 234-245.
  • 10Shapley L. Cores of convex games. International Journal of Game Theory, 1971,1(1): 11-26.

共引文献13

同被引文献37

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部