摘要
当前基于卷积神经网络的目标检测框架已成为主流,使用深层的特征提取网络可以达到很好的目标检测效果,但带来的大量的参数和计算开销使这些算法难以应用到对存储空间和参数量有一定限制的嵌入式设备中.为此,该文提出将知识蒸馏方法用于目标检测网络的特征提取网络,以提升浅层特征提取网络的性能,在降低模型的计算量和规模的同时尽可能地保证模型的性能.实验结果表明,经过蒸馏的浅层网络作为特征提取网络的检测精度比没有经过教师指导的网络精度提高了11.7%.与此同时,该文构建的浮游植物目标检测数据集不仅可以评估一些最先进的目标检测算法的性能,也有利于未来浮游植物显微视觉技术的发展.
Object detection framework based on convolution neural network usually uses a very deep convolution neural network to extract object features before detection.However,its huge network structure leads to the reduction of detection speed,thus,the model can hardly achieve real-time object detection and be put into embedded devices.Address to the problem,this paper applies a knowledge distillation method to feature extraction network of object detection network to improve the performance of shallow feature extraction network.In this way,the model can ensure the same performance with a big reduction on computational load and model scale.Experimental results show that the detection accuracy of feature extraction networks employing distilled shallow network is 11.7%higher than that of networks without teacher’s guidance.Moreover,we build a phytoplankton dataset in this paper,which can not only be used for the evaluation of the performance of object detection algorithms,but also will be helpful to the development of phytoplankton microscopic vision technology.
作者
张彤彤
董军宇
赵浩然
李琼
孙鑫
ZHANG Tongtong;DONG Junyu;ZHAO Haoran;LI Qiong;SUN Xin(College of Information Science and Engineering,Ocean University of China,Qingdao 266000,Shandong Province,China)
出处
《应用科学学报》
CAS
CSCD
北大核心
2020年第3期367-376,共10页
Journal of Applied Sciences
基金
国家自然科学基金(No.41576011,No.U1706218)资助。