期刊文献+

基于决策树与卷积神经网络的害虫识别算法 被引量:1

Pest Detection Algorithm Based on Decision Tree and Convolution Neural Network
下载PDF
导出
摘要 为了推动农业自动化的发展,以常见农业害虫为例,设计了一种基于决策树与卷积神经网络的害虫识别算法.其结合了无人机、ZigBee通信协议、数据处理服务器、机载报警器、害虫消除执行机构、Boosting算法、OpenCV开源库和TensorFlow开源库.经验证,本算法具有更高的害虫识别检出能力. To promote the development of agricultural automation,this study,taking the common agricultural pests as samples,designed a pest detection algorithm based on decision tree and convolution neural network.This algorithm which combines UAV,ZigBee communication protocol,data processing server,airborne alarm and pest elimination executing mechanism,Boosting algorithm,OpenCV open source library,and TensorFlow,has been proved to have higher ability of pest identification and detection.
作者 郑丽丽 Zheng Lili(College of Computer Information,Southern Fujian University of Science and Technology,Nan’an,362332,China)
出处 《洛阳师范学院学报》 2020年第5期32-35,43,共5页 Journal of Luoyang Normal University
关键词 机器视觉 决策树 深度学习 卷积神经网络 BOOSTING machine vision decision tree deep learning convolution neural network boosting
  • 相关文献

参考文献9

二级参考文献85

共引文献96

同被引文献23

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部