期刊文献+

神经网络校正的EKF在水下被动目标跟踪中的应用研究 被引量:3

Application of Nerual Network-aided Extend Kalman Filtering Technique in Underwater Passive Target Tracking
下载PDF
导出
摘要 对于水下目标被动跟踪,通常采用扩展卡尔曼滤波算法进行目标状态估计,但在目标跟踪过程中,由于目标运动的不确定性及系统噪声的影响,此时对目标的状态估计通常难以获得较高的精度.针对以上问题,本文提出一种由BP神经网络来校正扩展卡尔曼滤波的被动目标跟踪算法.利用BP神经网络的学习能力,将卡尔曼滤波过程中的滤波增益、滤波值与预测值之差、滤波值与量测值之差作为BP神经网络的输入,学习得出卡尔曼滤波的滤波误差,并利用此误差值对滤波过程进行在线校正.仿真表明,BP神经网络辅助校正扩展卡尔曼滤波的方法,对滤波过程的可靠性和精确度都有了提升. In underwater target passive tracking field,Extend Kalman filter is usually adopted to estimate the target state.However,due to the uncertainty of the target motion and the system noise during the target tracking process,it is difficult to obtain a high accurate estimation of the states of the target.To solve these problems,in this paper we propose a passive target tracking algorithm that uses BP neural network to calibrate the results of the extend Kalman filter.The filter gain,the difference between filtered value and predicted value,and the difference between filtered value and measured value derived from the Kalman filter are employed as the input to the BP neural network.The filter error can then be obtained by training neural network.Finally,the filter process is corrected online by using this error value.The simulation results show that the method improves the reliability and accuracy of the filtering process.
作者 丁一 张瑶 李冠男 DING Yi;ZHANG Yao;LI Guan-nan(State Key Laboratory of Robotics,Shenyang Institute of Automtion,Chinese Academy of Sciences,Shenyang 110016,China;Institutes for Robotics and Intelligent Manufacturing,Chinese Academy of Sciences,Shenyang 110016,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2020年第5期897-901,共5页 Journal of Chinese Computer Systems
基金 机器人学国家重点实验室面上课题项目(2017z05)资助.
关键词 被动目标跟踪 BP神经网络 扩展卡尔曼滤波 神经网络辅助卡尔曼滤波 passive target tracking BP neural network extend Kalman filter Kalman aided by neural network
  • 相关文献

参考文献5

二级参考文献50

  • 1高为广,杨元喜,张婷.神经网络辅助的GPS/INS组合导航自适应滤波算法[J].测绘学报,2007,36(1):26-30. 被引量:27
  • 2Chin L. Application of neural network in target tracking data fusion[J]. IEEE Trans. on Aerospace and Electronic Systems, 1994,30(1): 281-287.
  • 3付梦印,邓志红,张继伟.Kalman滤波理论及其在导航中的应用[M].北京:科学出版社,2003.
  • 4NASSAR S, NOURELDIN A, EL-SHEIMY N. Im- proving positioning accuracy during kinematic DGPS outage periods using SINS/DGPS integration and SINS data de-noising [J]. Survey Review, 2004, 37 (292) :426-438.
  • 5MOHAMMED E D, SPIROS P. A frequency domain INS/GPS dynamic response method for bridging GPS outages[J]. Journal of Navigation, 2010,63 (4):627- 643.
  • 6CHIANG K W, NOURELDIN A, EL-SHEIMY N. Multisensor integration using neuron computing for land-vehicle navigation [J]. GPS Solutions, 2003, 6 (4) :209-218.
  • 7NOURELDIN A, OSMAN A, EL-SHEIMY N. A neuro-wavelet method for multi-sensor system inte- gration for vehicular navigation[J]. Measurement Sci- ence and Technology, 2004,15 (2) : 404-412.
  • 8XU Z,LI Y,RIZOS C,et al. Novel hybrid of LS-SVM and kalman filter for GPS/INS integration[J]. Journal of Navigation, 2010,63 (2) : 289-299.
  • 9SEMENIUK L, NOURELDIN A. Bridging GPS outa- ges using neural network estimates of INS position and velocity errors [J]. Measurement Science and Technology, 2006,17 (10) : 2783-2798.
  • 10ABDELHAMID W, NOURELDIN A, EL-SHEIMY N. Adaptive fuzzy prediction of low-cost inertial- based positioning errors [J]. IEEE Transactions on Fuzzy Systems, 2007,15 (3) : 519-529.

共引文献39

同被引文献21

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部