期刊文献+

基于Skip-LSTM的机场群延误预测模型 被引量:2

Airport Group Delay Prediction Based on Skip-LSTM
下载PDF
导出
摘要 针对目前机场群发展不平衡,国际枢纽机场的延误率居高不下,航班时刻短缺,资源紧张,而区域枢纽机场却存在资源空闲的问题,提出一种基于跳过门的长短时记忆网络(Skip-LSTM,Skip Long Short Term Memory)的机场群延误预测模型。该模型首先将机场群中各个机场的信息,机场群航班信息以及机场群地区的气象信息进行融合及处理,然后搭建Skip-LSTM网络对融合后的数据信息进行特征提取,最后利用Softmax分类器对机场群的延误状况进行分类预测。Skip-LSTM网络在传统的长短时记忆网络(LSTM,Long Short Term Memory)的基础上增加了Skip门,能更加充分地提取机场群数据信息的时间相关性,获得更高的准确率。实验结果表明,基于Skip-LSTM的机场群延误预测模型的准确率可达95.35%,预测性能优于传统的网络模型,能对机场群的延误状况进行有效的预测。 In view of the current imbalance in the development of the airport group,the international hub airport has a high delay rate,the flight time is short,the resources are tight,but the regional hub airport has the problem of idle resources.An airport group delay prediction model based on Skip-LSTM is proposed.Firstly the information of each airport in the airport group,the flight information and the weather information of the airport group area are integrated and processed in the model,then the feature information of the merged data is extracted in the Skip-LSTM network model.Finally,the Softmax classifier is used to classify and predict.The Skip gate is added to the Skip-LSTM based on the traditional LSTM,which can more fully extract the time correlation of data information.The higher accuracy is obtained in the model.The experimental results show that the accuracy of the airport group delay prediction model based on Skip-LSTM can reach 95.35%,and the prediction performance is better than the traditional network model,which can effectively predict the delay of the airport group.
作者 屈景怡 渠星 杨俊 刘芳 张雄威 Qu Jingyi;Qu Xing;Yang Jun;Liu Fang;Zhang Xiongwei(Tianjin Key Laboratory of Advanced Signal Processing, Civil Aviation University of China, Tianjin 300300,China;North China Regional Administration, Beijing 100621,China)
出处 《信号处理》 CSCD 北大核心 2020年第4期584-592,共9页 Journal of Signal Processing
基金 天津市自然科学基金面上项目(19JCYBJC15900) 华北空管局科技项目(201903)。
关键词 机场群延误预测 跳过门的长短时记忆网络 时间相关性 数据处理 airport group delay prediction Skip long short term memory time correlation data processing
  • 相关文献

参考文献10

二级参考文献54

  • 1曹卫东,贺国光.连续航班延误与波及的贝叶斯网络分析[J].计算机应用,2009,29(2):606-610. 被引量:25
  • 2方云根,高金华.长江三角洲地区机场现状分析及优化建议[J].中国民航学院学报,2004,22(5):32-37. 被引量:4
  • 3刘晓明.珠三角机场博弈中深圳机场的定位与策略分析[J].特区经济,2005(10):86-88. 被引量:5
  • 4张越,胡华清.珠三角地区五大机场的协调运营模式[J].综合运输,2007,29(7):28-32. 被引量:12
  • 5[1]Files C L.Dynamic recurrent neural networks: theory and applications[J].IEEE Trans.on Neural Networks,1994,5(2): 153~155.
  • 6[2]Rovithakis G A..Robustifying nonlinear systems using high-order neural network controllers[J].IEEE Trans.on Automatic Contr.,1999,44(1): 102~108.
  • 7[3]S C Kremer.Identification of a specific limitation on local-feedback recurrent networks acting as Mealy-Moore machines[J].IEEE Trans.Neural Networks,1999,10(2): 433~438.
  • 8[4]Ku C C and Lee K Y.Diagonal recurrent neural networks for dynamic systems control[J].IEEE Trans on Neural Network,1995,6(1): 144-156.
  • 9[5]Chow W.S.and Fang Y.A recurrent neural-network- based real-time learning control strategy applying to nonlinear systems with unknown dynamics[J].IEEE Trans on Neural Network,1998,45(1): 151-161.
  • 10[7]Jin L and Gupta M M.Stable dynamic backpropagation learning in recurrent neural networks[J].IEEE Trans.Neural Networks,1999,10(6): 1321~1334.

共引文献132

同被引文献21

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部