期刊文献+

团簇CoMg2B2的结构稳定性、成键及电子性质研究

Structural stability,bonding and electronic properties of cluster CoMg2B2
下载PDF
导出
摘要 在B3LYP/Lan12dz水平下分别以二、四重态对团簇CoMg2B2存在的所有构型进行全参数优化.排除虚频和相同构型后,得出7种优化构型.其中,二重态构型4种,四重态构型3种.对团簇CoMg2B2分析后得到以下结论:构型1(2)和1(4)分别是二重态和四重态下最稳定结构;Mg-B键和Co-B键有较强的成键作用;不管是二重态构型还是四重态构型,Co-B键和B-B键的键级都有一定的拮抗作用;所有构型的电子都是由Mg原子流向Co原子和B原子;优化构型中电子流动性大小的排序为:4^(2)>3^(4)>2^(4)>3^(2)>1^(4)>1^(2)>2^(2). At the level of B3LYP/Lan12dz,all the configurations of the cluster CoMg2B2 were optimized by two or four states,respectively.By excluding imaginary frequency and the same configuration,seven optimal configurations were obtained.Among them,there are 4 duplex configurations and 3 quadruple configurations.The following conclusions are drawn:Configuration 1(2)and 1(4)are the most stable structures in the duplex and quadruplet states,respectively;Mg-B bond and Co-B bond have strong bonding effect;whether duplex or quadruplet configuration,the bond levels of Co-B bond and B-B bond have certain antagonism.The order of electronic fluidity in the optimized configuration is 4^(2)>3^(4)>2^(4)>3^(2)>1^(4)>1^(2)>2^(2).
作者 许友 方志刚 秦渝 廖薇 XU You;FANG Zhigang;QIN Yu;LIAOWei(School of Chemical Engineering,University of Science and Technology Liaoning,Anshan Liaoning 114051,China)
出处 《阜阳师范大学学报(自然科学版)》 2020年第2期23-27,39,共6页 Journal of Fuyang Normal University:Natural Science
基金 国家自然科学基金重点项目(51634004) 国家级大学生创新创业训练计划(201910146032,201910146034,201910146037) 辽宁省大学生创新创业训练计划(201910146039)资助。
关键词 团簇CoMg2B2 热力学稳定性 键长 键级 电子性质 cluster CoMg2B2 thermodynamic stability bond length bond level electronic properties
  • 相关文献

参考文献3

二级参考文献34

  • 1方志刚,胡红智,郭景雪.Quantum Chemical Study on Geometry and Property of Cluster Ni_4P[J].Chinese Journal of Structural Chemistry,2006,25(1):7-16. 被引量:72
  • 2[1]Boublik, T. (1970). Hard-sphere equation of state. J. Chem. Phys.,53(1), 471-472.
  • 3[2]Cochran, T. W. & Chiew, Y. C. (2004). Thermodynamic and structural properties of repulsive hard-core Yukawa fluid: Integral equation theory, perturbation theory and Monte Carlo simulations. J. Chem. Phys., 121(3), 1480-1486.
  • 4[3]Duh, D. M. & Mier-y-Teran, L. (1997). An analytical equation of state for the hard-core Yukawa fluid. Mol. Phys., 90(3),373-379.
  • 5[4]Gonzalez-Mozuelos, P., Alejandre, J. & Medina-Noyola, M. (1991).Structure of a colloidal suspension confined in a planar slit. J.Chem. Phys., 95(11 ), 8337-8345.
  • 6[5]Gu, C., Gao, G. H. & yu, Y. X. (2003). Density functional study of hydrogen adsorption at low temperatures. J. Chem. Phys.,119(1), 488-495.
  • 7[6]Henderson, D., Blum, L. & Noworyta, J. (1995). Inverse temperature expansion of some parameters arising from the solution of the mean spherical approximation integral-equation for a Yukawa fluid. J. Chem. Phys., 102(12), 4973-4975.
  • 8[7]Huang, D. M. & Chandler, D. (2002). The hydrophobic effect and the influence of solute-solvent attractions. J. Phys. Chem. B,106(8), 2047-2053.
  • 9[8]Katsov, K. & Weeks, J. D. (2001). On the mean field treatment of attractive interactions in nonuniform simple fluids. J. Phys.Chem. B, 105(28), 6738-6744.
  • 10[9]Katsov, K. & Weeks, J. D. (2002). Incorporating molecular scale structure into the van der Waals theory of the liquid-vapor. J.Phys. Chem. B, 106(33), 8429-8436.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部