期刊文献+

人工智能挑战、“法律自动售货机”幻象与法律职业的未来 被引量:1

The Challenge of AI,Fantasy of the Legal Vending Machine and Future of Legal Profession
下载PDF
导出
摘要 人工智能的挑战正逐渐从人的精神世界向现实世界转移,变得更加具有客观性。由于数字化的人工智能程序或机器与具有高等生物智慧的人类在所处理问题维度上的根本不同,“法律自动售货机”只是一种注定应当被终结的幻象。人工智能程序领域的发展会对法律职业的未来产生深远影响,不同法律职业的未来发展情况取决于其在法律实现活动中所发挥的作用以及可替代性程度。 The challenge of artificial intelligence is shifting from people’s spiritual world to the real world step by step,and is becoming more objective.Due to the fundamental differences between digital AI programs or machines and human beings in the dimension of solving problems,“legal vending machine”is merely a fantasy doomed to failure.However,the development of AI programs can have far-reaching impacts on the legal profession.The different futures of the legal profession depend on the role AI programs play in legal implementation activities and their substitutability.
作者 黄点点 HUANG Diandian(Law School,Wenzhou University,Wenzhou,China 325035)
机构地区 温州大学法学院
出处 《温州大学学报(社会科学版)》 2020年第2期73-80,共8页 Journal of Wenzhou University:Social Science Edition
关键词 人工智能 法律自动售货机 法律职业 律师 Artificial Intelligence Legal Vending Machine Legal Profession Lawyers
  • 相关文献

参考文献3

二级参考文献17

  • 1武妍,王守觉.一种通过反馈提高神经网络学习性能的新算法[J].计算机研究与发展,2004,41(9):1488-1492. 被引量:15
  • 2韩立群.人工神经网络[M].北京:北京邮电出版社,2006.
  • 3Jenkins B K,Tanguay A R. Handbook of Neural Computing and Neural Networks[M]. Boston: MIT Press,1995.
  • 4Bnlsabi A. Some analytical solutions to the general approximation problem for feed forward neural networks[J]. Neural Networks 1993(6): 991-996.
  • 5Setiono R,Leow W K.FERNN: An algorithm for fast extraction of rules from neural networks[J]. Applied Intelligence,2000, 12(1-2): 15-25.
  • 6XIA Min,FANG Jian-an,TANG Yang,et al. Dynamic depression control of chaotic neural networks for associative memory[J]. Neurocomputing, 2010(73),776-783.
  • 7OZ C,LEU M C. American sign language word recognition with a sensory glove using artificial neural networks[J].Engineering Applications of Artificial Intelligence,2011(4):1204-1213.
  • 8Singhal D, Swarup K S. Electricity price forecasting using artificial neural networks[J]. Electrical Power and Energy Systems,2011(3):550-555.
  • 9WU Wei,WANG Jian,CHENG Ming-song,et al. Convergence analysis of online gradient method for BP neural networks[J]. Neural Networks , 2011(24):91-98.
  • 10罗忠,谢永斌,朱重光.CMAC学习过程收敛性的研究[J].自动化学报,1997,23(4):455-461. 被引量:26

共引文献182

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部