摘要
对话情感分析旨在识别出一段对话中每个句子的情感倾向,其在电商客服数据分析中发挥着关键作用。不同于对单个句子的情感分析,对话中句子的情感倾向依赖于其在对话中的上下文。目前已有的方法主要采用循环神经网络和注意力机制建模句子之间的关系,但是忽略了对话作为一个整体所呈现的特点。建立在多任务学习的框架下,该文提出了一个新颖的方法,同时推测一段对话的主题分布和每个句子的情感倾向。对话的主题分布,作为一种全局信息,被嵌入到每个词以及句子的表示中。通过这种方法,每个词和句子被赋予了在特定对话主题下的含义。在电商客服对话数据上的实验结果表明,该文提出的模型能充分利用对话主题信息,与不考虑主题信息的基线模型相比,Macro-F1值均有明显提升。
Dialog sentiment analysis aims to classify the sentiment polarity of each utterance in dialogue,which plays a critical role in e-commerce customer service data analysis.Unlike sentiment analysis for a single sentence,an utterance’s sentiment polarity in dialog depends on its context.The recent methods mainly focused on modeling contextual connections using recurrent neural network and attention mechanism,ignoring the characteristic of the dialogue as a whole.Choosing the multi-task learning framework,we propose a novel model of detecting dialog topic distribution and each utterance’s sentiment polarity simultaneously.Dialog topic distribution,as a kind global information,is integrated into each word/utterance representation.In this way,each word and utterance has its meaning under particular dialog topics.The experimental results on a real-world dialog dataset in e-commerce customer service show that the proposed model can make full use of the dialog topic information,and significantly outperforms the baseline model that does not consider the dialog topic in Macro-F1 score.
作者
王建成
徐扬
刘启元
吴良庆
李寿山
WANG Jiancheng;XU Yang;LIU Qiyuan;WU Liangqing;LI Shoushan(School of Computer Science and Technology,Soochow University,Suzhou,Jiangsu 215006,China)
出处
《中文信息学报》
CSCD
北大核心
2020年第1期106-112,共7页
Journal of Chinese Information Processing
基金
国家自然科学基金(61672366)。
关键词
对话
情感分析
主题模型
dialogue
sentiment analysis
topic model